Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Oncol ; 41(2): 61, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253759

RESUMEN

Doxorubicin is a chemotherapeutic drug that generates free radical-induced toxicities. Natural agents are used to potentiate or ameliorate the toxicity of chemotherapy. None of the studies investigating whether antioxidants or prooxidants should be used with chemotherapy have addressed their efficacy in the same study. Therefore, the aim of this study was to investigate the potential synergy between doxorubicin and two natural rarely in vivo studied anticancer agents; the antioxidant "Kaempferol" and prooxidant "Piperlongumine" in Ehrlich tumor mice model. 77 albino mice were divided into 11 groups; Ehrlich ascites carcinoma cells were injected intramuscularly to develop solid tumors. After 14 days, intratumoral injections of single or combinations of free or Chitosan nanoparticles loaded with doxorubicin, Piperlongumine, and Kaempferol were performed. Tumor Characterization of nanoparticles was measured, tumors were histopathologically examined and evaluation of expression for cancer-related genes by real-time PCR. In silico molecular docking was performed to uncover potential novel targets for Piperlongumine and Kaempferol. Despite receiving half of the overall dose compared to the free drugs, the combined doxorubicin/ piperlongumine-chitosan nanoparticles treatment was the most efficient in reducing tumor volume; down-regulating Cyclin D1, and BCL2; as well as the Beclin-1, and Cyclophilin A genes modulating growth, apoptosis, autophagy, and metastasis, respectively; up-regulating the Glutathione peroxidase expression as a defense mechanism protecting from oxidative damage. When combined with doxorubicin, Kaempferol and Piperlongumine were effective against Ehrlich solid tumors. However, the combination with the Piperlongumine-loaded chitosan nanoparticles significantly enhanced its anticancer effect compared to the Kaempferol or the same free compounds.


Asunto(s)
Adenocarcinoma , Benzodioxoles , Quitosano , Animales , Ratones , Simulación del Acoplamiento Molecular , Quempferoles/farmacología , Doxorrubicina/farmacología , Simulación por Computador , Antioxidantes
2.
J Phys Chem C Nanomater Interfaces ; 125(22): 12207-12213, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34868444

RESUMEN

Microcrystal electron diffraction, grazing incidence wide-angle scattering, and UV-Vis spectroscopy were used to determine the unit cell structure and the relative composition of dimethylated diketopyrrolopyrrole (MeDPP) H- and J-polymorphs within thin films subjected to vapor solvent annealing (VSA) for different times. Electronic structure and excited state deactivation pathways of the different polymorphs were examined by transient absorption spectroscopy, conductive probe atomic force microscopy, and molecular modeling. We find VSA initially converts amorphous films into mixtures of H- and J-polymorphs and promotes further conversion from H to J with longer VSA times. Though both polymorphs exhibit efficient SF to form coupled triplets, free triplet yields are higher in J-polymorph films compared to mixed films because coupling in J-aggregates is lower, and, in turn, more favorable for triplet decoupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA