Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Aquat Toxicol ; 271: 106910, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631122

This study investigates the impact of varying concentrations of stevioside in the presence of lead (Pb) exposure on multiple aspects of thinlip mullet (Liza ramada) juveniles. Over 60 days, a total of 540 juvenile L. ramada with an initial weight of 3.5 ± 0.13 g were evenly distributed into six groups, each consisting of three replicates. The experimental diet consisted of varying levels of stevioside (150, 250, 350, and 450 mg/kg diet), with a consistent concentration of lead (Pb) set at 100 µg/kg diet. Stevioside demonstrated a positive influence on growth parameters, with the 450 mg/kg +Pb treatment showing the highest values. Biochemical parameters remained stable, but lead-exposed fish without stevioside displayed signs of potential liver damage and metabolic issues. Stevioside supplementation, especially at higher doses (≥250 mg/kg), reversed these negative effects, restoring biochemical markers to healthy control levels. Lead exposure significantly suppressed antioxidant enzyme activities, but co-administration of stevioside exhibited a dose-dependent protective effect, with 250, 350, and 450 mg/kg groups showing activities comparable to the healthy control. Lead-exposed fish without stevioside demonstrated attenuation of the immune response, but stevioside supplementation reversed these effects, particularly at ≥250 mg/kg. Stev (≥250 mg/kg) reduced IL-1ß and hepcidin expression, contrasting dose-dependent upregulation in lower dosages and lead-only group. Histological examinations of the intestine and liver supported these findings. In conclusion, stevioside, especially at 450 mg, positively impacted growth, biochemical parameters, antioxidant activity, immune response, and gene expression in L. ramada exposed to lead, suggesting its potential to mitigate lead toxicity in aquaculture. Additional research is warranted to investigate the long-term impacts of stevioside supplementation and its prospective implementation in aquaculture.


Diterpenes, Kaurane , Glucosides , Lead , Water Pollutants, Chemical , Animals , Lead/toxicity , Water Pollutants, Chemical/toxicity , Smegmamorpha , Liver/drug effects , Liver/metabolism , Antioxidants/metabolism
2.
Sci Rep ; 14(1): 7379, 2024 03 28.
Article En | MEDLINE | ID: mdl-38548786

We investigated the dietary effects of the single application of Saccharomyces cerevisiae, Lactobacillus bulgaricus, and their combination on growth, proximate composition of whole fish body, antioxidant defense, and histoarchitecture of hapa-reared Mugil capito. Healthy fish (Fish weighed = 10.30 ± 0.10 g at first) were randomly allocated into 4 equal groups, each with three replicates. These groups were designed as follows: (1) a group fed a basal diet without probiotics (control), (2) a group fed a diet containing S. cerevisiae (4 g/kg diet), (3) a group fed a diet containing L. bulgaricus (2 g/kg diet), and (4) the last group fed a diet containing a combination of both, all for a duration of 60 days. Probiotic-treated groups showed significantly better growth and nutrition utilization than the control group. Significant differences were observed in the crude fat and crude protein contents among the groups, with the combination group exhibiting the highest levels. However, there were no significant variations in ash content across all groups. The highest hepatic antioxidant capacity (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activities) was observed in the combination group. Thiobarbituric acid reactive substance (TBARS) concentrations were decreased significantly in all probiotic groups, suggesting improved oxidative stress resilience in these groups. The histomorphological analysis of the hepatopancreatic tissues revealed well-arranged parenchyma, increased glycogen storage, and melanomacrophage centers in probiotic-treated groups, particularly the combined probiotics group. Furthermore, the probiotic supplementation improved the histoarchitecture of the intestinal villi compared to the control group. To put it briefly, combined dietary administration of these probiotics improved growth, body composition, antioxidant defenses, and hepatic and intestinal health in hapa-reared M. capito, highlighting their promising role in promoting welfare and productivity.


Antioxidants , Probiotics , Animals , Antioxidants/metabolism , Saccharomyces cerevisiae/metabolism , Probiotics/pharmacology , Diet , Fishes/metabolism , Body Composition , Animal Feed/analysis , Dietary Supplements/analysis
3.
Fish Shellfish Immunol ; 148: 109493, 2024 May.
Article En | MEDLINE | ID: mdl-38461877

This study investigated the benefits of yeast, Saccharomyces cerevisiae and/or garlic, Allium sativum supplementation in diets of Nile tilapia with regard to growth, antioxidant status, hepatic and intestinal histoarchitecture, expression of growth- and immune-related genes, and resistance to Aeromonas sobria infection. Fish (with an initial weight of 9.43 ± 0.08 g) were allocated to twelve hapas, organized into four triplicate treatment groups defined as control (no supplementation), yeast (4 g/kg diet), garlic (30 g/kg diet), and a mixture of both. This trial continued over a 60-day feeding period. Results revealed that combined treatment (yeast + garlic) demonstrated the most promising outcomes regarding growth, with significantly higher final body weights, weight gains, and specific growth rates compared to other groups. Moreover, this combination enhanced hepatic antioxidant status, as evidenced by elevated levels of reduced glutathione and activities of catalase and superoxide dismutase enzymes, reflecting improved defense against oxidative stress. Histological assessments of the livers and intestines demonstrated structural enhancements in yeast and garlic treatments, suggesting improvements in organ health. In comparison to the control, the gene expression analyses unveiled increased expression of growth-related (igf-1 and ghr1) and immune-related (il-10, lyz, and hep) genes in the test groups, indicating a possible reinforcement of the growth and immune responses. The combined treatment also showed the highest resistance to A. sobria infection, as evidenced by improved survival rates and lower mortality compared with the other groups. These findings highlight the benefits of a combination of both yeast and garlic as a dietary supplementation regimen. In conclusion, this study suggests that the combined treatment regimen could be considered an effective strategy to promote the health and productivity of Nile tilapia under production conditions.


Aeromonas , Cichlids , Fish Diseases , Garlic , Animals , Antioxidants/metabolism , Saccharomyces cerevisiae/metabolism , Dietary Supplements/analysis , Diet/veterinary , Liver/metabolism , Intestines , Animal Feed/analysis , Disease Resistance
4.
Sci Rep ; 13(1): 22875, 2023 12 18.
Article En | MEDLINE | ID: mdl-38129552

An eight-week trial was designed to explore the dietary effects of commercially purchased exogenous bile acids (BAs) on growth, whole-body composition, lipid profile, intestinal digestive enzymes, liver function enzymes, oxidative stress biomarkers, and serum immunity of thinlip mullet, Liza ramada. Four triplicate groups (10.50 ± 0.05 g) were fed four soybean meal (SBM)-based diets supplied with several BAs levels at 0 (control), 50, 130, or 350 mg/kg feed. Results indicated that the growth was significantly increased in groups fed BAs-based diets, especially at 130 mg/kg feed. The body composition analysis showed that feeding fish on diets supplied with BAs up to 130 mg/kg decreased moisture (%) alongside increased crude protein (%). However, the body composition of fish fed a diet with 350 mg BAs/kg had the lowest moisture (%) and the highest crude protein (%). Moreover, there were significant increases in the intestinal (protease, α-amylase, and lipase) enzyme activities in the groups supplied with BAs up to 130 mg BAs/kg. Liver function enzymes (aspartate aminotransferase and alanine aminotransferase enzyme activities) were significantly decreased in BAs-supplemented groups compared to those fed the BAs-free group. On the other hand, the control group had higher total cholesterol, triglycerides, and low-density lipoprotein alongside the lower high-density lipoprotein than BAs-supplemented groups, especially at 350 mg BAs/kg feed. BAs significantly decreased hepatic malondialdehyde concentrations and increased the activity of hepatic catalase, superoxide dismutase, and total antioxidant capacity compared with those reared on the control diet. Serum lysozyme, respiratory burst, and alternative complement activities were significantly increased in BAs-supplied groups, particularly in the group supplied with 130 mg BAs/kg compared to those fed on the control diet. Accordingly, our findings recommend that including 130 mg BAs/kg in an SBM-based diet enhanced the growth, digestive enzyme activities, and liver functions, alleviated oxidative stress, boosted serum immunity, and lowered lipid metabolites in thinlip mullet. These findings will be beneficial for improving the quality of feed prepared for feeding mullets and an effective alternative strategy to support mullet farming.


Bile Acids and Salts , Smegmamorpha , Animals , Dietary Supplements , Diet , Triglycerides/metabolism , Smegmamorpha/metabolism , Immunity , Animal Feed/analysis
5.
Fish Shellfish Immunol ; 130: 359-367, 2022 Nov.
Article En | MEDLINE | ID: mdl-36126837

Spirulina (Arthrospira platensis) (SP) has been utilized for a long time as a valued feed supplement because of its proteinous content and other beneficial phytochemical compounds. Herein, we investigated the influences of SP-supplemented diets on growth, body somatic indices, digestive enzymes, hepatic antioxidant activities, and immunological responses of hapa-reared thinlip mullet (Liza ramada) juveniles. Fish were assigned in six triplicate groups and were fed for consecutive 60 days on the prepared experimental diets containing varying SP levels as 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 g/kg diet and defined as control (CNT or SP0), SP2, SP4, SP6, SP8, and SP10 groups, respectively. The results indicated that dietary SP supplementation linearly and quadratically improved the fish growth performance, and the highest growth indices were found in the SP8 group. However, dietary SP supplementation did not significantly alter feed conversion ratio (FCR), survival rate (%), hepato-somatic index, and viscera-somatic index among all experimental groups. Meanwhile, digestive enzymes (lipase, α-amylase, and proteases) in the mid-intestine were also linearly and quadratically increased in all SP-fed groups, and their uppermost values were noted in the SP8 group. Hepatic antioxidants such as superoxide dismutase, catalase, and total antioxidant capacity in SP-supplemented groups were significantly elevated than the CNT group. Conversely, hepatic malondialdehyde contents were decreased significantly along with increasing dietary SP-supplementation levels. The immunological parameters such as lysozyme, respiratory burst, and alternative complement activities were significantly elevated in SP-fed groups than in the CNT group. These findings evoked that feeding SP-supplemented diets (especially at 8.0 g/kg diet) significantly promoted the growth, digestive enzymes, hepatic antioxidant status, and immunity of L. ramada juveniles.


Smegmamorpha , Spirulina , Animal Feed/analysis , Animals , Antioxidants , Catalase , Diet/veterinary , Dietary Supplements , Lipase , Malondialdehyde , Muramidase , Peptide Hydrolases , Spirulina/chemistry , Superoxide Dismutase , alpha-Amylases
6.
Probiotics Antimicrob Proteins ; 14(1): 189-203, 2022 02.
Article En | MEDLINE | ID: mdl-35048326

Dietary Lactobacillus acidophilus ATCC 4356 was used to relieve the impacts of aflatoxin B1 toxicity on the performances of Liza ramada. The control diet was without any additives, while the second and third diets were supplemented with aflatoxin B1 at 0.5 and 1 mg/kg. The fourth diet was supplemented with Lb. acidophilus ATCC 4356 at 1 × 106 CFU/mL per kg diet, while the fifth with aflatoxin B1 at 1 mg/kg and Lb. acidophilus ATCC 4356 at 1 × 106 CFU/mL per kg diet. The growth performance markedly increased (p < 0.05) in L. ramada fed Lb. acidophilus ATCC 4356, while aflatoxin B1 at 0.5 and 1 mg/kg groups showed a severe reduction. The red blood cells, hemoglobulin, hematocrit, and white blood cells were markedly increased in L. ramada fed Lb. acidophilus ATCC 4356 while decreased (p < 0.05) in fish fed aflatoxin B1 at 0.5 and 1 mg/kg. The blood total protein and albumin were markedly increased (p < 0.05) in L. ramada fed Lb. acidophilus ATCC 4356 while reduced in aflatoxin B1 at 0.5 and 1 mg/kg groups. The levels of total cholesterol and triglycerides were meaningfully increased in fish of the Lb. acidophilus ATCC 4356 and aflatoxin B1 at 1 mg/kg groups while decreased in aflatoxin B1 at 0.5 and 1 mg/kg groups. Alanine aminotransferase, aspartate aminotransferase, creatinine, and urea levels were markedly decreased (p < 0.05) in fish-fed Lb. acidophilus ATCC 4356 while increased in aflatoxin B1 at 0.5 and 1 mg/kg groups. The highest levels of blood glucose and cortisol were seen in fish contaminated with aflatoxin B1 at 1 mg/kg, while the lowest levels were observed in the fish fed Lb. acidophilus ATCC 4356 group (p < 0.05). The catalase and superoxide dismutase were markedly enhanced in the Lb. acidophilus ATCC 4356 group and severely declined in aflatoxin B1 at 0.5 and 1 mg/kg groups (p < 0.05). The malondialdehyde level was markedly reduced in fish fed Lb. acidophilus ATCC 4356 with or without aflatoxin B1 at 1 mg/kg diets while increased in fish contaminated with aflatoxin B1 at 0.5 and 1 mg/kg (p < 0.05). The control group had lower malondialdehyde levels than the aflatoxin B1 at 1 mg/kg group and higher than the Lb. acidophilus ATCC 4356 with or without aflatoxin B1 toxicity (p < 0.05). Histopathological examination revealed impaired intestines and livers in fish contaminated with aflatoxin B1 while Lb. acidophilus ATCC 4356 relieves the inflammation and protected the intestines and livers. In conclusion, dietary Lb. acidophilus ATCC 4356 is recommended to relieve the impacts of aflatoxicosis-induced hepatorenal failure and oxidative stress in L. ramada.


Aflatoxin B1 , Smegmamorpha , Aflatoxin B1/toxicity , Animal Feed/analysis , Animals , Antioxidants/pharmacology , Diet/veterinary , Lactobacillus acidophilus , Liver
7.
Saudi J Biol Sci ; 29(1): 190-196, 2022 Jan.
Article En | MEDLINE | ID: mdl-35002408

The influence of herbicides causes health and economic loss, which requires innovative solutions to sustain the aquaculture industry. In this regard, dietary isatis is included in Nile tilapia diets to relieve atrazine (ATZ)-induced growth retardation, hepato-renal dysfunction, and oxidative stress. The first and second groups offered the control diet (control), while the third and fourth groups offered the isatis supplemented diet (1%). Meantime, half of the water was replaced and mixed with ATZ (1.39 mg/L) in the second and fourth groups for 30 days. The group of fish delivered isatis had significantly enhanced FBW, WG, and SGR, while fish intoxicated with ATZ had meaningfully impaired growth behavior (p < 0.05). Further, the FCR was improved by isatis, and ATZ resulted in the worst FCR among the groups. Interestingly fish fed isatis and exposed with ATZ (88.89%) had a higher survival rate than fish exposed with ATZ without isatis feeding, and both are lower than the control (97.78%) (p < 0.05). The histological structure in the isatis-treated groups showed distinguished enhancement and branching of the intestinal villi. The intestine of ATZ-treated fish revealed damage and inflammatory cell infiltration in the intestinal mucosa with separation of lining epithelium. Generally, fish fed isatis and intoxicated with ATZ had lower uric acid, urea, creatinine, ALT, and AST and higher total protein, globulin, and albumin than fish exposed with ATZ without feeding with isatis (p < 0.05). Markedly, fish-fed isatis had the highest SOD, CAT, GPx, and the lowest MDA level compared to the other groups (p < 0.05). Meanwhile, fish exposed with ATZ had the worst SOD, CAT, GPx, and the highest MDA level compared to the other groups (p < 0.05). In summary, dietary isatis relieved ATZ induced growth retardation, hepato-renal dysfunction, and oxidative stress in Nile tilapia.

8.
Biol Trace Elem Res ; 200(3): 1331-1338, 2022 Mar.
Article En | MEDLINE | ID: mdl-33851330

Microelements are well recognized as an essential approach in the field of aquaculture nutrition. Thus, this study aimed to evaluate copper (Cu) inclusion (0, 0.5, 1, and 2 mg/kg) on Striped catfish performances. Fish fed the Cu-incorporated diets for 60 days, then their growth behavior, antioxidative capacity, and intestinal and liver histological features were evaluated. The results showed a marked enhancement in Striped catfish's growth behavior fed 1-2 mg/kg of Cu, as shown by the final weight, weight gain, and specific growth rate. The feed and protein efficiency ratios were significantly affected by Cu in a dose-dependent manner. The highest level of Cu was accumulated in the whole body, muscle, liver, and gills of fish fed 2 mg/kg of Cu. The carcass composition of Striped catfish showed higher protein content in groups received 0.5, 1, and 2 mg/kg Cu in a linear and quadratic manner (p=0.001). The ash content was quadratically increased in Striped catfish fed 2 mg/kg Cu (p=0.001). However, no marked effects were observed on the moisture and lipid contents and the somatic indices (p>0.05). The incorporation of Cu showed meaningfully increased superoxide dismutase, catalase, and glutathione peroxidase but decreased malondialdehyde level in Striped catfish. The villous height exhibited visible growth and branching with increased doses of Cu without a significant increase in the goblet cells. No abnormal features were observed in the liver and hepatocytes of fish treated with Cu. It can be concluded that Cu is required at 1-2 mg/kg for better performances of Striped catfish.


Catfishes , Animals , Antioxidants , Copper , Intestines , Liver
9.
Biol Trace Elem Res ; 200(5): 2406-2415, 2022 May.
Article En | MEDLINE | ID: mdl-34308499

Zinc is one of the essential microelements involved in vital physiological and biological functions in the fish body. The study evaluated the growth performance, antioxidative capacity, and intestinal histomorphology of Grey Mullet (Liza ramada)-fed dietary zinc nanoparticles (ZnO-NPs) at 0, 10, 20, and 40 mg/kg for the first time. The final weight and specific growth rate (SGR) of Grey Mullet-fed dietary ZnO-NPs at 20 and 40 mg/kg were meaningfully enhanced (p < 0.05). Further, the weight gain (WG) was significantly higher in fish treated with ZnO-NPs than the control, and fish fed 20-40 mg/kg had the highest WG (p < 0.05). The feed conversion ratio (FCR) was meaningfully reduced in fish fed 20-40 mg ZnO-NPs/kg (p < 0.05). The histomorphology of the intestines revealed a significant improvement in villus height, villus width, and goblet cells by ZnO-NPs. The lysozyme activity, phagocytic activity, and phagocytic index showed higher levels in Grey Mullet-fed dietary ZnO-NPs at 20 mg/kg than fish fed 0, 10, and 40 mg/kg (p < 0.05). Superoxide dismutase (SOD) and catalase (CAT) were markedly improved in Grey Mullet treated with ZnO-NPs compared with the control, and the group of fish treated with 20 mg/kg had the highest SOD and CAT (p < 0.05). Glutathione peroxidase (GPx) was significantly higher in fish fed 20-40 mg/kg ZnO-NPs than fish fed 0-10 mg/kg and fish fed 40 mg ZnO-NPs/kg showing the highest GPx value (p < 0.05). The concentration of malondialdehyde was markedly lowered in Grey Mullet fed ZnO-NPs at varying levels (p < 0.05). Based on the overall results, the regression analysis suggests that ZnO-NPs can be included at 24.61-35.5 mg/kg for the best performances of Grey Mullet.


Metal Nanoparticles , Smegmamorpha , Zinc Oxide , Animal Feed/analysis , Animals , Antioxidants/pharmacology , Diet , Dietary Supplements/analysis , Fishes , Glutathione Peroxidase , Intestines , Superoxide Dismutase , Zinc/pharmacology , Zinc Oxide/pharmacology
10.
Animals (Basel) ; 11(12)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34944334

Mannan oligosaccharide (MOS) is prebiotic with high functionality in aquaculture. The current study investigated the potential roles of MOS on the growth performance, digestive enzyme activity, carcass composition, and blood chemistry of Thinlip grey mullet (Liza ramada). Four tested diets with 34.49% crude protein and 6.29% of total lipids were prepared and fortified with 0, 0.5, 1, and 2% MOS. Fish of initial weight = 5.14 ± 0.11 g/fish were distributed in 12 hapas (0.5 × 0.5 × 1 m) at 15 fish per hapa (triplicates) and fed the test diets to the satiation level two times a day (08:00 and 15:00) for eight weeks. At the end of the trial, all fish were weighed individually for growth performance calculation. Blood was collected to check blood chemistry traits, and intestines were dissected for digestive enzyme analysis. Fish treated with MOS had marked enhancement in the final body weight, feed conversion ratio, protein gain, and protein retention regardless of inclusion dose (p < 0.05). The weight gain, specific growth rate, and protein efficiency ratio were meaningfully enhanced by including MOS at 0.5 and 1%, followed by fish fed with 2% MOS, while the lowest values were in the control group (p < 0.05). Insignificant influences of MOS were seen on the chemical composition of carcass components (moisture, crude protein, total lipids, and ash) (p > 0.05). Fish treated with MOS at 0.5 and 1% had marked enhancement in the amylase, lipase, and protease activities regardless of inclusion dose (p < 0.05). The blood total protein and albumin levels were meaningfully enhanced by including MOS at 0.5 and 1%, followed by fish fed with 2% MOS, while the lowest values were in the control group (p < 0.05). The blood globulin was significantly enhanced in fish fed 1% MOS than fish treated with 0, 0.5, and 2% of MOS (p < 0.05). The blood lysozyme activity was meaningfully enhanced by including MOS at 1%, followed by fish treated with 0.5 and 2%, while the lowest values were in the control group (p < 0.05). Phagocytic activity and phagocytic index were markedly improved in fish treated with 1 and 2% MOS, followed by those fed 0.5% compared with fish fed MOS-free diet (p < 0.05). Superoxide dismutase and glutathione peroxidase were markedly improved in fish treated with 1, and 2% MOS, followed by those fed 0.5% compared with fish fed MOS-free diet (p < 0.05). Dietary MOS (0.5, 1, and 2%) meaningfully enhanced catalase activity while decreased the malondialdehyde concentration (p < 0.05). In summary, dietary MOS is required at 0.5-1% for enhancing the growth rate, feed efficiency, digestive enzyme activity, blood chemistry, and antioxidative capacity of grey mullet.

11.
Saudi J Biol Sci ; 28(12): 7241-7247, 2021 Dec.
Article En | MEDLINE | ID: mdl-34867027

Selenium (Se) is a multifunctional trace element required in specific amounts for the optimal growth of aquatic finfish species. For this reason, this study investigated the effect of Se nanoparticles on the growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish (Pangasianodon hypophthalmus). Striped catfish fed varying Se nanoparticles levels (0. 0.5, 1, and 2 mg/kg) in triplicate units and kept for 60 days. Striped catfish delivered dietary Se nanoparticles had markedly increased growth performance, specific growth rate (SGR), consumed feed, and protein efficiency ratio but reduced feed conversion ratio (FCR). The whole body, liver, muscle, and gills have higher Se accumulation levels in fish that received Se nanoparticles than the control with the highest level in fish fed 2 mg/kg. The carcass composition showed higher protein content in fish fed 1 and 2 mg/kg (p = 0.001 and 0.001) and higher ash content (p = 0.001 and 0.002) in fish fed 2 mg/kg than the remaining groups. Superoxide dismutase was meaningfully activated in Striped catfish delivered 1 and 2 mg Se nanoparticles/kg compared with the control (p < 0.05). Also, catalase and glutathione peroxidase activities were higher, and malondialdehyde level was lower in Striped catfish fed Se nanoparticles at 0.5, 1, and 2 mg/kg than the control (p < 0.05). The villi exhibited a visible increase in both height and branching with an increased level of Se nanoparticles in addition to the increased number of goblet cells. The Se nanoparticles-treated fish revealed dose-dependent modifications fluctuated from diffuse fatty vacuolization in hepatocytes with eccentric pyknotic hepatocytes nuclei. In conclusion, Se nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish. Based on SGR and FCR data's regression analysis, Se nanoparticles are recommended at 1.02-1.11 mg/kg diet.

12.
Fish Physiol Biochem ; 47(4): 869-880, 2021 Aug.
Article En | MEDLINE | ID: mdl-33770301

The trials of finding non-conventional and alternative aquafeed ingredients are increasing. In this sense, this study evaluated the influence of coconut oil on the growth, feed utilization, immune, and antioxidative responses of Nile tilapia. Five test diets were formulated by mixing coconut oil with the other ingredients at 0, 1, 2, 3, and 4% of the total ration and presented for tilapia for 60 successive days. The final weight, SGR, weight gain (WG), and feed intake were superior in fish delivered 2% of coconut oil (P < 0.05). Concurrently, fish that received 2% coconut oil had lower FCR and higher PER than fish of the control and 4% groups (P < 0.05). Higher lipase activity was observed in fish of 2% and 3% levels than the remaining groups (P < 0.05). Besides, the amylase and protease activities of fish in 1%, 2%, and 3% groups were higher than the 0% level (P < 0.05). The total blood cholesterol, RBCs, and PCV showed higher values in Nile tilapia fed 2% and 3% coconut oil (P < 0.05). The lysozyme and phagocytic activities were higher in fish fed 2% and 3% levels than the control (P < 0.05), while the phagocytic index in 2% and 3% levels was higher than 0% and 4% levels. Furthermore, SOD and CAT were higher in fish fed 1%, 2%, and 3% than fish fed 0% and 4% levels while GSH was higher in fish of 1%, 2%, and 3% than fish fed 0% level (P < 0.05). However, the MDA level was markedly lower in fish fed 25, 3%, and 4% coconut oil than the 0% level (P < 0.05). The intestine's histological structure in all groups appeared normal, forming of intestinal villi projecting from the intestinal wall. Also, the structure of the hepatopancreas had a normal architecture in all groups. To sum up, the inclusion of coconut oil at 2 to 3% is recommended as a replacer for fish oil in Nile tilapia diets.


Cichlids , Coconut Oil/pharmacology , Dietary Supplements , Amylases/metabolism , Animals , Antioxidants , Aquaculture/methods , Cichlids/anatomy & histology , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Hepatopancreas/anatomy & histology , Intestines/anatomy & histology , Intestines/enzymology , Lipase/metabolism , Liver/anatomy & histology , Peptide Hydrolases/metabolism , Phagosomes/drug effects , Phagosomes/physiology
13.
Environ Sci Pollut Res Int ; 28(22): 28750-28763, 2021 Jun.
Article En | MEDLINE | ID: mdl-33548043

Chlorpyrifos (CPF) is an extensive environmental contaminant and disrupts the physiological status of living organisms. CPF is found to hinder the health of aquatic organisms and ecological function in aquatic systems. The current study aimed at evaluating the protective effects of vitamin C (VC) on the immune response, hematological parameters, and histopathological alterations in Nile tilapia exposed to CPF. Nile tilapia were exposed to waterborne CPF (15 µg/L) for 30 days. Fish were divided into control group: received basal diet; CPF group: received basal diet and exposed to waterborne CPF; VC group: received basal diet plus 0.8 mg VC/kg; and CPF/VC group: received basal diet plus 0.8 mg VC/kg and exposed to waterborne CPF. Blood samples were taken after 15 days and 30 days of the treatment. Liver, gills, and intestine tissues were collected on the 30th day of treatment. CPF showed a deleterious effect on fish's growth performance; it decreased the weight gain by 6%, while VC increased it by 17-23% compared to the control group. CPF group recorded the lowest survival rate (83%), while VC achieved survivability of 96.7% and 93.3% in VC and CPF/VC groups, respectively. The blood picture revealed moderate changes in the CPF group, where the marked alteration was in the hemoglobin concentration and white blood cells. CPF disrupted the hepatic and renal function. Serum lysozyme activity, phagocytic activity, and phagocytic index displayed a dramatic decline in the CPF group but enhanced in VC and CPF/VC groups. An upregulation was observed in antioxidant genes (catalase and glutathione peroxidase), heat shock protein 70, caspase-3, and the cytokines interleukin 1ß, interleukin 8, and interferon-gamma in the CPF group. Simultaneously, moderate or normal levels were shown in the VC and CPF/VC groups. CPF altered the histoarchitecture of gills, intestine, and hepatopancreas with apparent degenerative changes possibly resulted from the oxidative stress. At the same time, VC retained the normal structure of the studied tissues. This study raises concerns about the safety of CPF and its impact on the aquatic environment. VC has a high potential to restore the normal physiology of fish exposed to CPF.


Chlorpyrifos , Cichlids , Animals , Antioxidants , Ascorbic Acid , Chlorpyrifos/toxicity , Immunosuppression Therapy , Inflammation , Oxidative Stress
14.
Mar Drugs ; 18(12)2020 Dec 01.
Article En | MEDLINE | ID: mdl-33271842

Marine-derived substances are known for their beneficial influences on aquatic animals' performances and are recommended to improve intestinal health, immunity, and anti-oxidative status. The present study investigates the role of chitosan nanoparticles on the intestinal histo-morphometrical features in association with the health and immune response of Grey Mullet (Liza ramada). Chitosan nanoparticles are included in the diets at 0, 0.5, 1, and 2 g/kg and introduced to fish in a successive feeding trial for eight weeks. The final body weight (FBW), weight gain (WG), and specific growth rate (SGR) parameters are significantly increased while feed conversion ratio (FCR) decreases by chitosan nanoparticles compared to the control (p < 0.05). The morphometric analysis of the intestines reveals a significant improvement in villus height, villus width, and the number of goblet cells in chitosan-treated groups in a dose-dependent manner. Additionally, there is a positive correlation between the thickness of the enterocyte brush border and the chitosan dose, referring to an increasing absorptive activity. Histologically, the intestinal wall of Grey Mullet consists of four layers; mucosa, sub-mucosa, tunica muscularis (muscular layers), and serosa. The histological examination of the L. ramada intestine shows a normal histo-morphology. The epithelial layer of intestinal mucosa is thrown into elongated finger-like projections, the intestinal villi. The values of hemoglobin, hematocrit, red blood cells (RBCs), total protein (TP), albumin, and globulin are significantly increased in fish fed 1, and 2 g/kg of chitosan nanoparticles compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest levels of TP and albumin are observed in fish fed 1 g/kg diet (p < 0.05). The lysozyme activity and phagocytic index are significantly enhanced by feeding chitosan nanoparticles at 0.5, 1, and 2 g/kg, whereas the phagocytic activity is improved in fish fed 1 and 2 g/kg (p < 0.05). The highest lysozyme activity and phagocytic index are observed in fish fed 1 g/kg. SOD is significantly activated by feeding chitosan nanoparticles at 1 g/kg. Simultaneously, glutathione peroxidase (GPx) and catalase (CAT) activities also are enhanced by feeding chitosan at 1 and 2 g/kg, compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest GPx and CAT activities are observed in fish fed 1 g/kg (p < 0.05). Conversely, the malondialdehyde (MDA) levels are decreased by feeding chitosan at 1 and 2 g/kg, with the lowest being in fish fed 1 g/kg (p < 0.05). To summarize, the results elucidate that L. ramada fed dietary chitosan nanoparticles have a marked growth rate, immune response, and anti-oxidative response. These improvements are attributed to the potential role of chitosan nanoparticles in enhancing intestinal histo-morphometry and intestinal health. These results soundly support the possibility of using chitosan nanoparticles at 1-2 g/kg as a feasible functional supplement for aquatic animals.


Chitosan/pharmacology , Dietary Supplements , Immunity/drug effects , Intestinal Absorption/drug effects , Intestines/drug effects , Nanoparticles , Smegmamorpha , Animal Feed , Animals , Aquaculture , Biomarkers/blood , Intestines/growth & development , Intestines/immunology , Oxidative Stress/drug effects , Smegmamorpha/blood , Smegmamorpha/growth & development , Smegmamorpha/immunology , Weight Gain/drug effects
15.
Fish Shellfish Immunol ; 102: 316-325, 2020 Jul.
Article En | MEDLINE | ID: mdl-32371257

Chlorpyrifos (CPF) is one of the predominant water pollutants associated with inflammation and immunodepression in aquatic animals. In this study, menthol oil (MNT) impacted the immunity, antioxidative, and anti-inflammatory responses against CPF toxicity in Nile tilapia. Fish fed two diets with or without MNT and placed in four groups (control, CPF, MNT, and CPF/MNT). After 30 days, fish fed MNT displayed higher growth performance and lower FCR than CPF-intoxicated fish without feeding MNT (P < 0.05). The survival rate of fish was reduced in the CPF group without MNT feeding (P < 0.05). Blood Hb, PCV, RBCs, and WBCs were decreased in fish by CPF toxicity, while the highest Hb, PCV, RBCs, and WBCs were observed in fish fed MNT followed by those fed the control without CPF toxicity (P < 0.05). Fish fed MNT had the highest total protein, albumin, and globulin, as well as the lowest urea, bilirubin, and creatinine after 15 and 30 days. However, fish under CPF toxicity had the most inferior total protein, albumin, and globulin, as well as the highest urea, bilirubin, and creatinine among the groups (P < 0.05). The enzyme activities of ALP and ALT displayed low levels by MNT with or without CPF exposure than fish fed without MNT with or without CPF exposure after 15 and 30 days (P < 0.05). The lysozyme and phagocytic activities displayed reduced levels by CPF without MNT feeding after 15 and 30 days, while increased activities were noticed by MNT feeding without CPF toxicity followed by fish fed MNT with CPF toxicity (P < 0.05). The transcription of CAT and GPX genes displayed upregulated levels in tilapia fed MNT and exposed to CPF (P < 0.05). Also, CPF toxicity increased the transcription of the IFN-γ gene but decreased the IL-8 and IL-1ß genes. The transcription of HSP70 displayed lower levels (P < 0.05) by CPF without supplementing MNT than fish fed MNT and exposed to CPF. Histopathological analysis revealed that inflammation existed in the liver, gills, and intestine of tilapia due to CPF toxicity while MNT protected tissues from inflammation. To conclude, MNT activated the immunity, antioxidative, and anti-inflammatory responses of Nile tilapia under CPF toxicity.


Chlorpyrifos/toxicity , Cichlids/immunology , Fish Diseases/drug therapy , Inflammation/veterinary , Insecticides/toxicity , Menthol/metabolism , Oils, Volatile/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Fish Diseases/immunology , Fish Diseases/pathology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Menthol/administration & dosage , Oils, Volatile/administration & dosage , Random Allocation , Water Pollutants, Chemical/toxicity
16.
Fish Shellfish Immunol ; 103: 421-429, 2020 Aug.
Article En | MEDLINE | ID: mdl-32470510

The role of mannanoligosaccharide (MOS) in reducing the adverse effects of chlorpyrifos (CPF) toxicity in tilapia was evaluated in the present study. Fish were allotted into four groups and fed the basal diet or MOS and exposed to CPF (control, CPF, MOS, and MOS/CPF) for 30 days. Fish fed MOS revealed higher growth and survival rates and lower FCR than CPF-intoxicated fish (P < 0.05). The Hb, PCV, RBCs, and WBCs variables were lowered by CPF toxicity and increased by MOS (P < 0.05). The values of total protein (sTP), albumin (ALB), globulin (GLB), lysozyme (LZM), and phagocytic activities (PA) decreased whereas, ALP, ALT, AST, urea, bilirubin (BIL), and creatinine (CR) were increased by CPF toxicity. However, dietary MOS increased the sTP, ALB, GLB, LZM, and PA and decreased the ALP, ALT, AST, BIL, and CR. The PA and phagocytic index displayed higher levels by MOS feeding than the other groups (P < 0.05). The lowest mRNA level of GPX1 (cellular GPX) gene was observed in fish of the CPF group, while the highest level was shown in the MOS/CPF group (P < 0.05). Fish in the control and CPF groups displayed downregulated CAT whereas the expression of GPX and CAT genes was higher in fish of the MOS/CPF group than fish in the MOS group (P < 0.05). MOS upregulated the expression of HSP70 gene with CPF toxicity. Fish of the CPF and MOS/CPF groups displayed upregulated CASP3, IFN-γ, and IL-8 genes. Fish of the CPF group exhibited the lowest IL-1ß, while fish of the MOS/CPF group showed upregulated IL-1ß. The intoxication with CPF induced histopathological inflammations in the gills, intestine, and liver tissues, while dietary MOS protected against inflammation. In summary, dietary MOS is recommended as an immunostimulant to counteract the inflammatory impacts of waterborne CPF toxicity in Nile tilapia.


Antioxidants/metabolism , Chlorpyrifos/toxicity , Cichlids/immunology , Gene Expression/immunology , Mannans/metabolism , Oligosaccharides/metabolism , Water Pollutants, Chemical/toxicity , Animal Feed/analysis , Animals , Cichlids/genetics , Cichlids/growth & development , Diet/veterinary , Dietary Supplements/analysis , Insecticides/toxicity , Mannans/administration & dosage , Oligosaccharides/administration & dosage , Random Allocation
17.
Biol Trace Elem Res ; 198(1): 283-292, 2020 Nov.
Article En | MEDLINE | ID: mdl-32026341

The present investigation aimed to evaluate the influence of copper nanoparticles (Cu-NPs) on the growth, immunity, and oxidation resistance of common carp (3.02 ± 0.01 g, initial mean weight ± S.E.). Five groups of fish fed diets with Cu-NPs at 0, 0.5, 1, 2, and 4 mg/kg for 8 weeks. The results suggested that Cu-NPs in diets increased the growth performance and reduced FCR with linear and quadratic model (P < 0.05). Also, common carp fed Cu-NPs showed increased carcass protein, lipid, and ash contents in a dose-dependent manner (P < 0.05). The Cu accumulation in the carcass, liver, muscle, and gills increased by Cu-NPs and showed the maximum at 4 mg Cu-NPs/kg (P < 0.05). No significant alterations were found in the blood variables due to Cu-NP supplementation except for the Hb, RBCs, total protein, albumin, and globulin levels which showed the highest level in 2 mg/kg (P < 0.05). IgM level, phagocytic, lysozyme, SOD, CAT, and GPX activities were boosted by Cu-NPs with decreased malondialdehyde (MDA) content (P < 0.05). Based on regression analysis, the requirement of dietary Cu-NPs for common carp was estimated to be 2.19 to 2.91 mg/kg diet.


Carps , Nanoparticles , Animal Feed/analysis , Animals , Copper/pharmacology , Diet , Gills
...