Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Parasitol Int ; 98: 102810, 2024 Feb.
Article En | MEDLINE | ID: mdl-37730195

Trichinosis spiralis is a global disease with significant economic impact. Albendazole is the current-treatment. Yet, the world-widely emerging antimicrobial resistance necessitates search for therapeutic substitutes. Curcumin is a natural compound with abundant therapeutic benefits. This study aimed to evaluate the potential of crude-curcumin, chitosan and for the first time curcumin-nano-emulsion and curcumin-loaded-chitosan-nanoparticles against Trichinella spiralis adults and larvae in acute and chronic trichinosis models. Trichinosis spiralis was induced in 96 Swiss-albino mice. Infected mice were divided into 2 groups. Group I constituted the acute model, where treatment started 2 h after infection for 5 successive days. Group II constituted the chronic model, where treatment started at the 30th day-post-infection and continued for 10 successive days (Refer to graphical abstract). Each group contained 8 subgroups that were designated Ia-Ih and IIa-IIh and included; a; Untreated-control, b; Albendazole-treated (Alb-treated), c; Crude-curcumin-treated (Cur-treated), d; Curcumin-nanoemulsion-treated (Cur-NE-treated), e; Albendazole and crude-curcumin-treated (Alb-Cur-treated), f; Albendazole and curcumin-nanoemulsion-treated (Alb-Cur-NE-treated), g; Chitosan-nanoparticles-treated (CS-NPs-treated) and h; Curcumin-loaded-chitosan-nanoparticles-treated (Cur-CS-NPs-treated). Additionally, six mice constituted control-uninfected group III. The effects of the used compounds on the parasite tegument, in-vivo parasitic load-worm burden, local pathology and MDA concentration in small intestines of acutely-infected and skeletal muscle of chronically-infected mice were studied. Results showed that albendazole was effective, yet, its combination with Cur-NE showed significant potentiation against adult worms and muscle larvae and alleviated the pathology in both models. Cur-CS-NPs exhibited promising results in both models. Crude-curcumin showed encouraging results especially against muscle larvae on long-term use. Treatments effectively reduced parasite load, local MDA level and CD31 expression with anti-inflammatory effect in intestine and muscle sections.


Chitosan , Curcumin , Parasites , Trichinella spiralis , Trichinellosis , Mice , Animals , Trichinellosis/drug therapy , Trichinellosis/parasitology , Albendazole/pharmacology , Albendazole/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Chitosan/pharmacology , Chitosan/therapeutic use , Larva
2.
Nutr Neurosci ; 26(12): 1172-1182, 2023 Dec.
Article En | MEDLINE | ID: mdl-36342068

ABSTRACTThe deposition of ß-amyloid plaques, either due to their over-production or insufficient clearance, is an important pathological process in cognitive impairment and dementia. Icariin (ICA), a flavonoid compound extracted from Epimedium, has recently gained attention for numerous age-related diseases, such as neurodegenerative diseases. We aimed to explore the possible neuro-protective effect of ICA supplementation in colchicine-induced cognitive deficit rat model and exploring its effect on the ß-amyloid proteolytic enzymes. The study included four groups (10 rats each): normal control, untreated colchicine, colchicine + 10 mg/kg ICA, and colchicine + 30 mg/ kg ICA. Results revealed that intra-cerebro-ventricular colchicine injection produced neuronal morphological damage, ß amyloid deposition, and evident cognitive impairment in the behavioral assessment. Icariin supplementation in the two doses for 21 days attenuated neuronal death, reduced the ß amyloid levels, and improved memory consolidation. This was associated with modulation of the proteolytic enzymes (Neprilysin, Matrix Metalloproteinase-2, and insulin-degrading enzyme) concluding that ß-amyloid enzymatic degradation may be the possible therapeutic target for ICA.


Alzheimer Disease , Cognitive Dysfunction , Rats , Animals , Amyloid beta-Peptides/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/pharmacology , Peptide Hydrolases/metabolism , Peptide Hydrolases/pharmacology , Brain/metabolism , Cognitive Dysfunction/metabolism , Cognition , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
...