RESUMEN
The best-studied Helicobacter pylori virulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure the in vivo expression of genes on the cagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC. In vivo expression of H. pylori virulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, since in vitro expression of cagA was not greater in H. pylori strains from patients with GC than in those from patients with NAG or DU, increased expression in GC in vivo is likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable to H. pylori colonization than the acidic environment in patients with NAG or DU.
Asunto(s)
Úlcera Duodenal/microbiología , Gastritis/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Neoplasias Gástricas/microbiología , Adulto , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mucosa Gástrica/microbiología , Regulación Bacteriana de la Expresión Génica , Humanos , Virulencia/genéticaRESUMEN
The mammalian gastric and oral mucosa may be colonized by mixed Helicobacter and Campylobacter species, respectively, in individual animals. To better characterize the presence and distribution of Helicobacter and Campylobacter among marine mammals, we used PCR and 16S rDNA sequence analysis to examine gastric and oral samples from ten dolphins (Tursiops gephyreus), one killer whale (Orcinus orca), one false killer whale (Pseudorca crassidens), and three wild La Plata river dolphins (Pontoporia blainvillei). Helicobacter spp. DNA was widely distributed in gastric and oral samples from both captive and wild cetaceans. Phylogenetic analysis demonstrated two Helicobacter sequence clusters, one closely related to H. cetorum, a species isolated from dolphins and whales in North America. The second related cluster was to sequences obtained from dolphins in Australia and to gastric non-H. pylori helicobacters, and may represent a novel taxonomic group. Dental plaque sequences from four dolphins formed a third cluster within the Campylobacter genus that likely represents a novel species isolated from marine mammals. Identification of identical Helicobacter spp. DNA sequences from dental plaque, saliva and gastric fluids from the same hosts, suggests that the oral cavity may be involved in transmission. These results demonstrate that Helicobacter and Campylobacter species are commonly distributed in marine mammals, and identify taxonomic clusters that may represent novel species.
Asunto(s)
Campylobacter/clasificación , Cetáceos/microbiología , Helicobacter/clasificación , Filogenia , Animales , Australia , Campylobacter/genética , Campylobacter/aislamiento & purificación , ADN Bacteriano/genética , Helicobacter/genética , Helicobacter/aislamiento & purificación , Infecciones por Helicobacter/microbiología , Boca/microbiología , América del Norte , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Estómago/microbiologíaRESUMEN
Up to 28-fold differences in vacA expression in Helicobacter pylori strains grown in vitro were demonstrated by real time quantitative RT-PCR. These large differences in expression were unrelated to putative -35 and -10 motifs or to other untranslated sequences upstream of the ATG start site. The lack of correlation between promoter sequences and the vacA expression levels suggest the potential existence of a bacterial strain-specific factor, as earlier proposed by others on the basis of reporter gene fusions.