Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 146
1.
J Med Imaging (Bellingham) ; 10(6): 066004, 2023 Nov.
Article En | MEDLINE | ID: mdl-38090646

Purpose: We describe a method to identify repeatable liver computed tomography (CT) radiomic features, suitable for detection of steatosis, in nonhuman primates. Criteria used for feature selection exclude nonrepeatable features and may be useful to improve the performance and robustness of radiomics-based predictive models. Approach: Six crab-eating macaques were equally assigned to two experimental groups, fed regular chow or an atherogenic diet. High-resolution CT images were acquired over several days for each macaque. First-order and second-order radiomic features were extracted from six regions in the liver parenchyma, either with or without liver-to-spleen intensity normalization from images reconstructed using either a standard (B-filter) or a bone-enhanced (D-filter) kernel. Intrasubject repeatability of each feature was assessed using a paired t-test for all scans and the minimum p-value was identified for each macaque. Repeatable features were defined as having a minimum p-value among all macaques above the significance level after Bonferroni's correction. Features showing a significant difference with respect to diet group were identified using a two-sample t-test. Results: A list of repeatable features was generated for each type of image. The largest number of repeatable features was achieved from spleen-normalized D-filtered images, which also produced the largest number of second-order radiomic features that were repeatable and different between diet groups. Conclusions: Repeatability depends on reconstruction kernel and normalization. Features were quantified and ranked based on their repeatability. Features to be excluded for more robust models were identified. Features that were repeatable but different between diet groups were also identified.

2.
Sci Rep ; 13(1): 19607, 2023 11 10.
Article En | MEDLINE | ID: mdl-37950044

Detection of the physiological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is challenging in the absence of overt clinical signs but remains necessary to understand a full subclinical disease spectrum. In this study, our objective was to use radiomics (from computed tomography images) and blood biomarkers to predict SARS-CoV-2 infection in a nonhuman primate model (NHP) with inapparent clinical disease. To accomplish this aim, we built machine-learning models to predict SARS-CoV-2 infection in a NHP model of subclinical disease using baseline-normalized radiomic and blood sample analyses data from SARS-CoV-2-exposed and control (mock-exposed) crab-eating macaques. We applied a novel adaptation of the minimum redundancy maximum relevance (mRMR) feature-selection technique, called mRMR-permute, for statistically-thresholded and unbiased feature selection. Through performance comparison of eight machine-learning models trained on 14 feature sets, we demonstrated that a logistic regression model trained on the mRMR-permute feature set can predict SARS-CoV-2 infection with very high accuracy. Eighty-nine percent of mRMR-permute selected features had strong and significant class effects. Through this work, we identified a key set of radiomic and blood biomarkers that can be used to predict infection status even in the absence of clinical signs. Furthermore, we proposed and demonstrated the utility of a novel feature-selection technique called mRMR-permute. This work lays the foundation for the prediction and classification of SARS-CoV-2 disease severity.


COVID-19 , Animals , COVID-19/diagnostic imaging , SARS-CoV-2 , Biomarkers , Machine Learning , Primates
3.
JMIR Form Res ; 7: e44065, 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37856193

BACKGROUND: Through our work, we have demonstrated how clinical decision support (CDS) tools integrated into the electronic health record (EHR) assist providers in adopting evidence-based practices. This requires confronting technical challenges that result from relying on the EHR as the foundation for tool development; for example, the individual CDS tools need to be built independently for each different EHR. OBJECTIVE: The objective of our research was to build and implement an EHR-agnostic platform for integrating CDS tools, which would remove the technical constraints inherent in relying on the EHR as the foundation and enable a single set of CDS tools that can work with any EHR. METHODS: We developed EvidencePoint, a novel, cloud-based, EHR-agnostic CDS platform, and we will describe the development of EvidencePoint and the deployment of its initial CDS tools, which include EHR-integrated applications for clinical use cases such as prediction of hospitalization survival for patients with COVID-19, venous thromboembolism prophylaxis, and pulmonary embolism diagnosis. RESULTS: The results below highlight the adoption of the CDS tools, the International Medical Prevention Registry on Venous Thromboembolism-D-Dimer, the Wells' criteria, and the Northwell COVID-19 Survival (NOCOS), following development, usability testing, and implementation. The International Medical Prevention Registry on Venous Thromboembolism-D-Dimer CDS was used in 5249 patients at the 2 clinical intervention sites. The intervention group tool adoption was 77.8% (4083/5249 possible uses). For the NOCOS tool, which was designed to assist with triaging patients with COVID-19 for hospital admission in the event of constrained hospital resources, the worst-case resourcing scenario never materialized and triaging was never required. As a result, the NOCOS tool was not frequently used, though the EvidencePoint platform's flexibility and customizability enabled the tool to be developed and deployed rapidly under the emergency conditions of the pandemic. Adoption rates for the Wells' criteria tool will be reported in a future publication. CONCLUSIONS: The EvidencePoint system successfully demonstrated that a flexible, user-friendly platform for hosting CDS tools outside of a specific EHR is feasible. The forthcoming results of our outcomes analyses will demonstrate the adoption rate of EvidencePoint tools as well as the impact of behavioral economics "nudges" on the adoption rate. Due to the EHR-agnostic nature of EvidencePoint, the development process for additional forms of CDS will be simpler than traditional and cumbersome IT integration approaches and will benefit from the capabilities provided by the core system of EvidencePoint.

4.
J Infect Dis ; 228(Suppl 4): S322-S336, 2023 10 03.
Article En | MEDLINE | ID: mdl-37788501

The mass production of the graphics processing unit and the coronavirus disease 2019 (COVID-19) pandemic have provided the means and the motivation, respectively, for rapid developments in artificial intelligence (AI) and medical imaging techniques. This has led to new opportunities to improve patient care but also new challenges that must be overcome before these techniques are put into practice. In particular, early AI models reported high performances but failed to perform as well on new data. However, these mistakes motivated further innovation focused on developing models that were not only accurate but also stable and generalizable to new data. The recent developments in AI in response to the COVID-19 pandemic will reap future dividends by facilitating, expediting, and informing other medical AI applications and educating the broad academic audience on the topic. Furthermore, AI research on imaging animal models of infectious diseases offers a unique problem space that can fill in evidence gaps that exist in clinical infectious disease research. Here, we aim to provide a focused assessment of the AI techniques leveraged in the infectious disease imaging research space, highlight the unique challenges, and discuss burgeoning solutions.


COVID-19 , Communicable Diseases , Humans , Artificial Intelligence , Pandemics , Diagnostic Imaging/methods , Communicable Diseases/diagnostic imaging
5.
Heliyon ; 9(8): e18680, 2023 Aug.
Article En | MEDLINE | ID: mdl-37593628

Rationale and objectives: Adenoid cystic carcinoma (ACC) is a rare salivary gland cancer. The vast majority of clinical trials evaluating systemic therapy efficacy in solid tumors use the Response Evaluation Criteria in Solid Tumors (RECIST) to measure response that is limited to 2 dimensional only evaluations, not taking volume or density into account. The indolent behavior ACC represents a challenge toward an appropriate evaluation of therapy response. Objectives: 1) To describe and contrast volumetric and density changes at each time-point, including changes noted from baseline to best response, to currently used 2 dimensional-only criteria (RECIST) and 2) To report the coefficient of variation in volume measurement among three reviewers on a subset of ACC patients. Materials and methods: We retrospectively assessed a cohort of 18 prospectively treated patients with ACC in a phase 2 trial with vorinostat using a volumetric (viable tumor volume, VTV) and density criteria. Three independent and blinded observers segmented target lesions across a sample of randomly selected computed tomography (CT) exams to examine inter-observer variation. Results: We found that the average coefficient of variation among observers for all target lesions was 16.1%, with lung lesions displaying a smaller variation at 14.0% (p-value >0.17). We describe examples of decrease in volume and density in several lesions despite stable disease by RECIST. Conclusion: This pilot study demonstrates that two-dimensional criteria such as RECIST may not be the best criteria to assess response to therapy, especially with evolving tools within picture archiving and communication system (PACS) that can assess volumetric size, density and texture, however, this should be prospectively studied.

6.
Microbiol Spectr ; 11(3): e0353822, 2023 06 15.
Article En | MEDLINE | ID: mdl-37184428

Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD). However, the role of hepatic involvement in EVD progression is understudied. Medical imaging in established animal models of EVD (e.g., nonhuman primates [NHPs]) can be a strong complement to traditional assays to better investigate this pathophysiological process in vivo and noninvasively. In this proof-of-concept study, we used longitudinal multiparametric magnetic resonance imaging (MRI) to characterize liver morphology and function in nine rhesus monkeys after exposure to Ebola virus (EBOV). Starting 5 days postexposure, MRI assessments of liver appearance, morphology, and size were consistently compatible with the presence of hepatic edema, inflammation, and congestion, leading to significant hepatomegaly at necropsy. MRI performed after injection of a hepatobiliary contrast agent demonstrated decreased liver signal on the day of euthanasia, suggesting progressive hepatocellular dysfunction and hepatic secretory impairment associated with EBOV infection. Importantly, MRI-assessed deterioration of biliary function was acute and progressed faster than changes in serum bilirubin concentrations. These findings suggest that longitudinal quantitative in vivo imaging may be a useful addition to standard biological assays to gain additional knowledge about organ pathophysiology in animal models of EVD. IMPORTANCE Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD), but the contribution of hepatic pathophysiology to EVD progression is not fully understood. Noninvasive medical imaging of liver structure and function in well-established animal models of disease may shed light on this important aspect of EVD. In this proof-of-concept study, we used longitudinal magnetic resonance imaging (MRI) to characterize liver abnormalities and dysfunction in rhesus monkeys exposed to Ebola virus. The results indicate that in vivo MRI may be used as a noninvasive readout of organ pathophysiology in EVD and may be used in future animal studies to further characterize organ-specific damage of this condition, in addition to standard biological assays.


Ebolavirus , Hemorrhagic Fever, Ebola , Liver Diseases , Animals , Macaca mulatta , Magnetic Resonance Imaging , Disease Models, Animal
7.
Microbiol Spectr ; 11(3): e0349422, 2023 06 15.
Article En | MEDLINE | ID: mdl-37036346

Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. The pathogenesis of MVD remains poorly understood, partially due to the low number of cases that can be studied, the absence of state-of-the-art medical equipment in areas where cases are reported, and limitations on the number of animals that can be safely used in experimental studies under maximum containment animal biosafety level 4 conditions. Medical imaging modalities, such as whole-body computed tomography (CT), may help to describe disease progression in vivo, potentially replacing ethically contentious and logistically challenging serial euthanasia studies. Towards this vision, we performed a pilot study, during which we acquired whole-body CT images of 6 rhesus monkeys before and 7 to 9 days after intramuscular MARV exposure. We identified imaging abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to clinical, virological, and gross pathological hallmarks of MVD in this animal model. Quantitative image analysis indicated hepatomegaly with a significant reduction in organ density (indicating fatty infiltration of the liver), splenomegaly, and edema that corresponded with gross pathological and histopathological findings. Our results indicated that CT imaging could be used to verify and quantify typical MVD pathogenesis versus altered, diminished, or absent disease severity or progression in the presence of candidate medical countermeasures, thus possibly reducing the number of animals needed and eliminating serial euthanasia. IMPORTANCE Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. Much is unknown about disease progression and, thus, prevention and treatment options are limited. Medical imaging modalities, such as whole-body computed tomography (CT), have the potential to improve understanding of MVD pathogenesis. Our study used CT to identify abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to known clinical signs of MVD in this animal model. Our results indicated that CT imaging and analyses could be used to elucidate pathogenesis and possibly assess the efficacy of candidate treatments.


Marburg Virus Disease , Marburgvirus , Humans , Animals , Marburg Virus Disease/diagnostic imaging , Marburg Virus Disease/pathology , Pilot Projects , Tomography, X-Ray Computed , Disease Progression , Primates
8.
Antiviral Res ; 214: 105605, 2023 06.
Article En | MEDLINE | ID: mdl-37068595

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


COVID-19 , Pneumonia , Humans , Animals , Cricetinae , COVID-19/diagnostic imaging , SARS-CoV-2 , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Angiotensin-Converting Enzyme 2 , Positron-Emission Tomography , Mesocricetus , Disease Progression
9.
J Vet Intern Med ; 37(2): 428-436, 2023 Mar.
Article En | MEDLINE | ID: mdl-36866722

BACKGROUND: Angiodysplasia (AGD) is rarely diagnosed in dogs with gastrointestinal bleeding (GIB) and is reported in case reports in dogs. OBJECTIVE: Describe signalment, clinical and diagnostic features of dogs with gastrointestinal (GI) AGD diagnosed by video capsule endoscopy (VCE). ANIMALS: Dogs with overt or suspected GIB which underwent VCE. METHODS: Dogs for which a VCE was submitted for overt or suspected GIB from 2016 to 2021 were selected retrospectively. Medical records and full-length VCE recordings where AGDs were initially detected, were reviewed by 2 trained internists. AGD was considered definitive if 2 readers detected it. Signalment, clinical signs, blood work, medications, concurrent diseases, findings of previous conventional endoscopy, and surgical exploration (if applicable) of dogs with AGD were recorded. RESULTS: Definitive AGD was diagnosed in 15 of 291 (5%) dogs (12 males, 3 females). Twelve (80%) had overt GIB, 11 (73%) had hematochezia, and 6 (40%) had microcytic and hypochromic anemia. AGD was missed by conventional endoscopy in 9/9 dogs and exploratory surgery in 3/3 dogs. Thirteen capsules were administered by mouth (1 incomplete study), and 2 via endoscopy directly into the duodenum. AGD was visualized in the stomach of 3 dogs, in the small intestine of 4, and in the colon of 13 dogs. CONCLUSION AND CLINICAL IMPORTANCE: Although rare, AGD should be considered in dogs with suspected GIB after a negative conventional endoscopy or surgical exporation. Video capsuel endoscopy appears to be a sensitive test to identify AGD within the GI tract.


Angiodysplasia , Capsule Endoscopy , Dog Diseases , Male , Female , Dogs , Animals , Capsule Endoscopy/veterinary , Retrospective Studies , Endoscopy, Gastrointestinal/veterinary , Endoscopy, Gastrointestinal/adverse effects , Intestine, Small , Gastrointestinal Hemorrhage/diagnosis , Gastrointestinal Hemorrhage/veterinary , Angiodysplasia/diagnosis , Angiodysplasia/veterinary , Angiodysplasia/complications , Dog Diseases/diagnosis
10.
Acad Radiol ; 30(9): 2037-2045, 2023 09.
Article En | MEDLINE | ID: mdl-36966070

RATIONALE AND OBJECTIVES: Animal modeling of infectious diseases such as coronavirus disease 2019 (COVID-19) is important for exploration of natural history, understanding of pathogenesis, and evaluation of countermeasures. Preclinical studies enable rigorous control of experimental conditions as well as pre-exposure baseline and longitudinal measurements, including medical imaging, that are often unavailable in the clinical research setting. Computerized tomography (CT) imaging provides important diagnostic, prognostic, and disease characterization to clinicians and clinical researchers. In that context, automated deep-learning systems for the analysis of CT imaging have been broadly proposed, but their practical utility has been limited. Manual outlining of the ground truth (i.e., lung-lesions) requires accurate distinctions between abnormal and normal tissues that often have vague boundaries and is subject to reader heterogeneity in interpretation. Indeed, this subjectivity is demonstrated as wide inconsistency in manual outlines among experts and from the same expert. The application of deep-learning data-science tools has been less well-evaluated in the preclinical setting, including in nonhuman primate (NHP) models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection/COVID-19, in which the translation of human-derived deep-learning tools is challenging. The automated segmentation of the whole lung and lung lesions provides a potentially standardized and automated method to detect and quantify disease. MATERIALS AND METHODS: We used deep-learning-based quantification of the whole lung and lung lesions on CT scans of NHPs exposed to SARS-CoV-2. We proposed a novel multi-model ensemble technique to address the inconsistency in the ground truths for deep-learning-based automated segmentation of the whole lung and lung lesions. Multiple models were obtained by training the convolutional neural network (CNN) on different subsets of the training data instead of having a single model using the entire training dataset. Moreover, we employed a feature pyramid network (FPN), a CNN that provides predictions at different resolution levels, enabling the network to predict objects with wide size variations. RESULTS: We achieved an average of 99.4 and 60.2% Dice coefficients for whole-lung and lung-lesion segmentation, respectively. The proposed multi-model FPN outperformed well-accepted methods U-Net (50.5%), V-Net (54.5%), and Inception (53.4%) for the challenging lesion-segmentation task. We show the application of segmentation outputs for longitudinal quantification of lung disease in SARS-CoV-2-exposed and mock-exposed NHPs. CONCLUSION: Deep-learning methods should be optimally characterized for and targeted specifically to preclinical research needs in terms of impact, automation, and dynamic quantification independently from purely clinical applications.


COVID-19 , Deep Learning , Animals , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Primates , SARS-CoV-2 , Tomography, X-Ray Computed/methods
11.
JMIR Res Protoc ; 12: e42653, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36652293

BACKGROUND: The improvements in care resulting from clinical decision support (CDS) have been significantly limited by consistently low health care provider adoption. Health care provider attitudes toward CDS, specifically psychological and behavioral barriers, are not typically addressed during any stage of CDS development, although they represent an important barrier to adoption. Emerging evidence has shown the surprising power of using insights from the field of behavioral economics to address psychological and behavioral barriers. Nudges are formal applications of behavioral economics, defined as positive reinforcement and indirect suggestions that have a nonforced effect on decision-making. OBJECTIVE: Our goal is to employ a user-centered design process to develop a CDS tool-the pulmonary embolism (PE) risk calculator-for PE risk stratification in the emergency department that incorporates a behavior theory-informed nudge to address identified behavioral barriers to use. METHODS: All study activities took place at a large academic health system in the New York City metropolitan area. Our study used a user-centered and behavior theory-based approach to achieve the following two aims: (1) use mixed methods to identify health care provider barriers to the use of an active CDS tool for PE risk stratification and (2) develop a new CDS tool-the PE risk calculator-that addresses behavioral barriers to health care providers' adoption of CDS by incorporating nudges into the user interface. These aims were guided by the revised Observational Research Behavioral Information Technology model. A total of 50 clinicians who used the original version of the tool were surveyed with a quantitative instrument that we developed based on a behavior theory framework-the Capability-Opportunity-Motivation-Behavior framework. A semistructured interview guide was developed based on the survey responses. Inductive methods were used to analyze interview session notes and audio recordings from 12 interviews. Revised versions of the tool were developed that incorporated nudges. RESULTS: Functional prototypes were developed by using Axure PRO (Axure Software Solutions) software and usability tested with end users in an iterative agile process (n=10). The tool was redesigned to address 4 identified major barriers to tool use; we included 2 nudges and a default. The 6-month pilot trial for the tool was launched on October 1, 2021. CONCLUSIONS: Clinicians highlighted several important psychological and behavioral barriers to CDS use. Addressing these barriers, along with conducting traditional usability testing, facilitated the development of a tool with greater potential to transform clinical care. The tool will be tested in a prospective pilot trial. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/42653.

12.
Appl Clin Inform ; 13(5): 1214-1222, 2022 10.
Article En | MEDLINE | ID: mdl-36577502

OBJECTIVES: Our health system launched an initiative to regulate venous thromboembolism (VTE) risk assessment and prophylaxis with electronically embedded risk assessment models based on validated clinical prediction rules. Prior to system-wide implementation, usability testing was conducted on the VTE clinical decision support system (CDSS) to assess provider perceptions, facilitate adoption, and usage of the tool. The objective of this study was to conduct usability testing with end users on the CDSS' risk assessment model and prophylaxis ordering components. METHODS: This laboratory usability testing study was conducted with 24 health care providers. Participants were given two case scenarios that mirrored real-world scenarios to assess likelihood of use and adoption. During each case scenario, participants engaged in a think-aloud session, verbalizing their decision-making process while interacting with the tool. Following each case scenario, participants completed the System Usability Scale (SUS) and a posttask interview. Participants' comments and interactions with the VTE CDSS were placed into coding categories and analyzed for generalizable themes by three independent coders. RESULTS: Of the 24 participants, 50% were female and the mean age of all participants was 32.76 years. The average SUS across the different services lines was 72.39 (C grade). Each participant's comments were grouped into three overarching themes: functionality, visibility/navigation, and content. Comments included personalizing workflow for each service line, minimizing the number of clicks, clearly defining risk models, including background on risk scores, and providing treatment guidelines for order sets. CONCLUSION: An important step toward providing quality health care to patients at risk of developing a VTE event is providing user-friendly tools to providers. Following usability testing, our study revealed opportunities to positively impact provider behavior and acceptance. The rigor and breadth of this usability testing study and adoption of the optimizations should increase provider adoption and retention of the VTE CDSS.


Venous Thromboembolism , Humans , Female , Adult , Male , Venous Thromboembolism/diagnosis , Venous Thromboembolism/prevention & control , Risk Assessment , Risk Factors , Health Personnel , Electronic Health Records
13.
J Med Imaging (Bellingham) ; 9(6): 066003, 2022 Nov.
Article En | MEDLINE | ID: mdl-36506838

Purpose: We propose a method to identify sensitive and reliable whole-lung radiomic features from computed tomography (CT) images in a nonhuman primate model of coronavirus disease 2019 (COVID-19). Criteria used for feature selection in this method may improve the performance and robustness of predictive models. Approach: Fourteen crab-eating macaques were assigned to two experimental groups and exposed to either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or a mock inoculum. High-resolution CT scans were acquired before exposure and on several post-exposure days. Lung volumes were segmented using a deep-learning methodology, and radiomic features were extracted from the original image. The reliability of each feature was assessed by the intraclass correlation coefficient (ICC) using the mock-exposed group data. The sensitivity of each feature was assessed using the virus-exposed group data by defining a factor R that estimates the excess of variation above the maximum normal variation computed in the mock-exposed group. R and ICC were used to rank features and identify non-sensitive and unstable features. Results: Out of 111 radiomic features, 43% had excellent reliability ( ICC > 0.90 ), and 55% had either good ( ICC > 0.75 ) or moderate ( ICC > 0.50 ) reliability. Nineteen features were not sensitive to the radiological manifestations of SARS-CoV-2 exposure. The sensitivity of features showed patterns that suggested a correlation with the radiological manifestations. Conclusions: Features were quantified and ranked based on their sensitivity and reliability. Features to be excluded to create more robust models were identified. Applicability to similar viral pneumonia studies is also possible.

14.
Proc Natl Acad Sci U S A ; 119(15): e2110846119, 2022 04 12.
Article En | MEDLINE | ID: mdl-35385353

Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.


Hemorrhagic Fever, Ebola , Positron-Emission Tomography , Receptors, GABA , Animals , Biomarkers/metabolism , Disease Models, Animal , Hemorrhagic Fever, Ebola/diagnostic imaging , Hemorrhagic Fever, Ebola/pathology , Lung/pathology , Macaca mulatta , Positron-Emission Tomography/methods , Pyrazoles/metabolism , Pyrimidines/metabolism , Receptors, GABA/metabolism , Spleen/pathology
15.
JMIR Form Res ; 6(2): e32230, 2022 Feb 28.
Article En | MEDLINE | ID: mdl-35225812

BACKGROUND: Computed tomography pulmonary angiography (CTPA) is frequently used in the emergency department (ED) for the diagnosis of pulmonary embolism (PE), while posing risk for contrast-induced nephropathy and radiation-induced malignancy. OBJECTIVE: We aimed to create an automated process to calculate the Wells score for pulmonary embolism for patients in the ED, which could potentially reduce unnecessary CTPA testing. METHODS: We designed an automated process using electronic health records data elements, including using a combinatorial keyword search method to query free-text fields, and calculated automated Wells scores for a sample of all adult ED encounters that resulted in a CTPA study for PE at 2 tertiary care hospitals in New York, over a 2-month period. To validate the automated process, the scores were compared to those derived from a 2-clinician chart review. RESULTS: A total of 202 ED encounters resulted in a completed CTPA to form the retrospective study cohort. Patients classified as "PE likely" by the automated process (126/202, 62%) had a PE prevalence of 15.9%, whereas those classified as "PE unlikely" (76/202, 38%; Wells score >4) had a PE prevalence of 7.9%. With respect to classification of the patient as "PE likely," the automated process achieved an accuracy of 92.1% when compared with the chart review, with sensitivity, specificity, positive predictive value, and negative predictive value of 93%, 90.5%, 94.4%, and 88.2%, respectively. CONCLUSIONS: This was a successful development and validation of an automated process using electronic health records data elements, including free-text fields, to classify risk for PE in ED visits.

16.
Nucleic Acids Res ; 50(D1): D211-D221, 2022 01 07.
Article En | MEDLINE | ID: mdl-34570238

Small non-coding RNAs (sncRNAs) are pervasive regulators of physiological and pathological processes. We previously developed the human miRNA Tissue Atlas, detailing the expression of miRNAs across organs in the human body. Here, we present an updated resource containing sequencing data of 188 tissue samples comprising 21 organ types retrieved from six humans. Sampling the organs from the same bodies minimizes intra-individual variability and facilitates the making of a precise high-resolution body map of the non-coding transcriptome. The data allow shedding light on the organ- and organ system-specificity of piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), microRNAs (miRNAs) and other non-coding RNAs. As use case of our resource, we describe the identification of highly specific ncRNAs in different organs. The update also contains 58 samples from six tissues of the Tabula Muris collection, allowing to check if the tissue specificity is evolutionary conserved between Homo sapiens and Mus musculus. The updated resource of 87 252 non-coding RNAs from nine non-coding RNA classes for all organs and organ systems is available online without any restrictions (https://www.ccb.uni-saarland.de/tissueatlas2).


MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , RNA, Small Nuclear/genetics , RNA, Small Nucleolar/genetics , RNA, Transfer/genetics , Software , Animals , Atlases as Topic , Female , Humans , Internet , Male , Mice , MicroRNAs/classification , MicroRNAs/metabolism , Organ Specificity , RNA, Long Noncoding/classification , RNA, Long Noncoding/metabolism , RNA, Small Interfering/classification , RNA, Small Interfering/metabolism , RNA, Small Nuclear/classification , RNA, Small Nuclear/metabolism , RNA, Small Nucleolar/classification , RNA, Small Nucleolar/metabolism , RNA, Transfer/classification , RNA, Transfer/metabolism , Transcriptome
17.
Viruses ; 13(8)2021 08 09.
Article En | MEDLINE | ID: mdl-34452435

Hemorrhagic smallpox, caused by variola virus (VARV), was a rare but nearly 100% lethal human disease manifestation. Hemorrhagic smallpox is frequently characterized by secondary bacterial infection, coagulopathy, and myocardial and subendocardial hemorrhages. Previous experiments have demonstrated that intravenous (IV) cowpox virus (CPXV) exposure of macaques mimics human hemorrhagic smallpox. The goal of this experiment was to further understand the onset, nature, and severity of cardiac pathology and how it may contribute to disease. The findings support an acute late-stage myocarditis with lymphohistiocytic infiltrates in the CPXV model of hemorrhagic smallpox.


Cowpox virus/pathogenicity , Hemorrhage/virology , Myocarditis/virology , Smallpox/physiopathology , Smallpox/virology , Acute Disease , Animals , Disease Models, Animal , Female , Macaca fascicularis/virology , Male , Myocarditis/veterinary , Smallpox/complications
18.
J Hosp Med ; 2021 Aug 18.
Article En | MEDLINE | ID: mdl-34424184

BACKGROUND: Pediatric hospital medicine (PHM) became a subspecialty of the American Board of Pediatrics (ABP) in 2016. Starting in 2019, residency graduates are required to complete fellowship training to qualify for PHM board eligibility. These requirements pose unique challenges to internal medicine-pediatrics (med-peds) residents interested in practicing combined adult hospital medicine (HM) and PHM. OBJECTIVE: To describe the needs of med-peds residents interested in PHM fellowship training and how the current PHM training environment can meet these needs. METHODS: We conducted two cross-sectional electronic survey studies: one of med-peds residents and one of PHM fellowship program directors (FDs). Surveys were distributed to resident and FD listservs. Questions were designed using an iterative consensus process among authors. Responses were analyzed with descriptive statistics. RESULTS: Four hundred sixty-six residents responded to the resident survey. Ninety-six percent (n = 446) had considered a career in HM. Almost all (n = 456, 97.9%) respondents indicated a preference for a fellowship with both adult HM and PHM clinical training. Subspecialty designation decreased desire to pursue a career including PHM for 90.1% of respondents. Twenty-eight (58.3%) FDs responded to the FD survey. Fifteen (53.6%) programs reported being able to accommodate adult HM and PHM clinical time. CONCLUSION: The majority of resident respondents reported a desire for a PHM fellowship with clinical time in both PHM and adult HM. Approximately 30% of current US PHM fellowship programs can accommodate adult HM practice for med-peds fellows, and many other programs would be willing to explore such opportunities.

19.
Nat Commun ; 12(1): 2855, 2021 05 17.
Article En | MEDLINE | ID: mdl-34001896

Ebola virus (EBOV) causes neurological symptoms yet its effects on the central nervous system (CNS) are not well-described. Here, we longitudinally assess the acute effects of EBOV on the brain, using quantitative MR-relaxometry, 18F-Fluorodeoxyglucose PET and immunohistochemistry in a monkey model. We report blood-brain barrier disruption, likely related to high cytokine levels and endothelial viral infection, with extravasation of fluid, Gadolinium-based contrast material and albumin into the extracellular space. Increased glucose metabolism is also present compared to the baseline, especially in the deep gray matter and brainstem. This regional hypermetabolism corresponds with mild neuroinflammation, sporadic neuronal infection and apoptosis, as well as increased GLUT3 expression, consistent with increased neuronal metabolic demands. Neuroimaging changes are associated with markers of disease progression including viral load and cytokine/chemokine levels. Our results provide insight into the pathophysiology of CNS involvement with EBOV and may help assess vaccine/treatment efficacy in real time.


Brain/diagnostic imaging , Disease Models, Animal , Fluorodeoxyglucose F18 , Hemorrhagic Fever, Ebola/diagnostic imaging , Positron-Emission Tomography/methods , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , Brain/metabolism , Brain/virology , Cytokines/metabolism , Ebolavirus/physiology , Haplorhini , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions , Humans
20.
Nucleic Acids Res ; 49(W1): W397-W408, 2021 07 02.
Article En | MEDLINE | ID: mdl-33872372

Analyzing all features of small non-coding RNA sequencing data can be demanding and challenging. To facilitate this process, we developed miRMaster. After the analysis of over 125 000 human samples and 1.5 trillion human small RNA reads over 4 years, we present miRMaster 2 with a wide range of updates and new features. We extended our reference data sets so that miRMaster 2 now supports the analysis of eight species (e.g. human, mouse, chicken, dog, cow) and 10 non-coding RNA classes (e.g. microRNAs, piRNAs, tRNAs, rRNAs, circRNAs). We also incorporated new downstream analysis modules such as batch effect analysis or sample embeddings using UMAP, and updated annotation data bases included by default (miRBase, Ensembl, GtRNAdb). To accommodate the increasing popularity of single cell small-RNA sequencing data, we incorporated a module for unique molecular identifier (UMI) processing. Further, the output tables and graphics have been improved based on user feedback and new output formats that emerged in the community are now supported (e.g. miRGFF3). Finally, we integrated differential expression analysis with the miRNA enrichment analysis tool miEAA. miRMaster is freely available at https://www.ccb.uni-saarland.de/mirmaster2.


RNA, Small Untranslated/chemistry , Sequence Analysis, RNA/methods , Animals , Cattle , Dementia/genetics , Dogs , Humans , Mice , MicroRNAs , RNA, Small Untranslated/metabolism , Rats , Software
...