Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297574

RESUMEN

Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages of Quercus and relatives in Quercoideae during their initial radiation, dated to the Early-Middle Eocene. Ancestral reconstructions including fossils suggest ancestors of Castanea + Castanopsis, Lithocarpus, and the Old World oak clade probably co-occurred in North America and Eurasia, while the ancestors of Chrysolepis, Notholithocarpus, and the New World oak clade co-occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization-perhaps in the form of ancient syngameons like those seen today-has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.

2.
Mol Phylogenet Evol ; : 108202, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288897

RESUMEN

Vaccinieae is a morphologically diverse and species-rich (∼1430 species) tribe in Ericaceae. Although the majority of diversity is tropical, Vaccinieae are best known for temperate crops (i.e., blueberries, cranberries, huckleberries, lingonberries) in Vaccinium. Vaccinium itself (∼500 species) has been previously suggested as highly polyphyletic and taxonomic boundaries among many of the other genera in the tribe remain uncertain. We assessed the evolutionary history of Vaccinieae with phylogenomic analyses based on a target-enrichment dataset containing 256 low-copy nuclear loci and 210 species representing 30 of the 35 genera in the tribe and 25 of the 29 sections of Vaccinium. We conducted time-calibrated biogeographic analyses and diversification analyses to explore the area of origin and global dispersal history of the tribe. The analysis recovered a temperate North American origin for Vaccinieae approximately 30 million years ago. Tropical diversity of Vaccinieae was inferred to result from multiple, independent movements into the tropics from north-temperate ancestors. Diversification rate increases corresponded to radiation into the Andes and SE Asia. The pseudo-10-locular ovary evolved once in the tribe from the five-locular state, coinciding with the diversification of a major clade that includes most Asian Vaccinium and the group from which commercial blueberries are derived (V. sect. Cyanococcus). A reconstruction from available chromosome counts suggests that a major polyploid event predated the evolution of nearly half the diversity of Vaccinieae. The extent of polyphyly in Vaccinium documented here supports the need for a generic reclassification of the tribe.

3.
Annu Rev Genet ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227132

RESUMEN

Polyploidy is a cellular state containing more than two complete chromosome sets. It has largely been studied as a discrete phenomenon in either organismal, tissue, or disease contexts. Increasingly, however, investigation of polyploidy across disciplines is coalescing around common principles. For example, the recent Polyploidy Across the Tree of Life meeting considered the contribution of polyploidy both in organismal evolution over millions of years and in tumorigenesis across much shorter timescales. Here, we build on this newfound integration with a unified discussion of polyploidy in organisms, cells, and disease. We highlight how common polyploidy is at multiple biological scales, thus eliminating the outdated mindset of its specialization. Additionally, we discuss rules that are likely common to all instances of polyploidy. With increasing appreciation that polyploidy is pervasive in nature and displays fascinating commonalities across diverse contexts, inquiry related to this important topic is rapidly becoming unified.

4.
Proc Natl Acad Sci U S A ; 121(35): e2322527121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159371

RESUMEN

The southeastward extrusion of Indochina along the Ailao Shan-Red River shear zone (ARSZ) is one of two of the most prominent consequences of the India-Asia collision. This plate-scale extrusion has greatly changed Southeast Asian topography and drainage patterns and effected regional climate and biotic evolution. However, little is known about how Indochina was extruded toward the southeast over time. Here, we sampled 42 plant and animal clades (together encompassing 1,721 species) that are distributed across the ARSZ and are not expected to disperse across long distances. We first assess the possible role of climate on driving the phylogenetic separations observed across the ARSZ. We then investigate the temporal dynamics of the extrusion of Indochina through a multitaxon analysis. We show that the lineage divergences across the ARSZ were most likely associated with the Indochinese extrusion rather than climatic events. The lineage divergences began at ~53 Ma and increased sharply ~35 Ma, with two peaks at ~19 Ma and ~7 Ma, and one valley at ~13 Ma. Our results suggest a two-phase model for the extrusion of Indochina, and in each phase, the extrusion was subject to periods of acceleration and decrease, in agreement with the changes of the India-Asia convergence rate and angle from the early Eocene to the late Miocene. This study highlights that a multitaxon analysis can illuminate the timing of subtle historical events that may be difficult for geological data to pinpoint and can be used to explore other tectonic events.


Asunto(s)
Filogenia , Animales , India , Clima , Plantas/clasificación , Ríos , Asia Sudoriental , Evolución Biológica
5.
Appl Plant Sci ; 12(4): e11606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184199

RESUMEN

Premise: Traditional methods of ploidal-level estimation are tedious; using DNA sequence data for cytotype estimation is an ideal alternative. Multiple statistical approaches to leverage sequence data for ploidy inference based on site-based heterozygosity have been developed. However, these approaches may require high-coverage sequence data, use inappropriate probability distributions, or have additional statistical shortcomings that limit inference abilities. We introduce nQuack, an open-source R package that addresses the main shortcomings of current methods. Methods and Results: nQuack performs model selection for improved ploidy predictions. Here, we implement expectation maximization algorithms with normal, beta, and beta-binomial distributions. Using extensive computer simulations that account for variability in sequencing depth, as well as real data sets, we demonstrate the utility and limitations of nQuack. Conclusions: Inferring ploidy based on site-based heterozygosity alone is difficult. Even though nQuack is more accurate than similar methods, we suggest caution when relying on any site-based heterozygosity method to infer ploidy.

7.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830106

RESUMEN

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Asunto(s)
Evolución Molecular , Genoma de Planta , Filogenia , Poliploidía , Cromosomas de las Plantas/genética , Duplicación de Gen
8.
Hortic Res ; 11(5): uhae077, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779140

RESUMEN

How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, Triplostegia glandulifera (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in T. glandulifera that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in T. glandulifera. A series of genes putatively associated with alpine adaptation (e.g. CBFs, ERF-VIIs, and RAD51C) exhibited higher expression levels in T. glandulifera than in its low-elevation relative, Lonicera japonica. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of T. glandulifera and L. japonica, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. CNLs, prRLPs, and XII RLKs), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. RAD1, DMC1, and MSH3) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.

9.
Nat Commun ; 15(1): 4262, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802387

RESUMEN

Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.


Asunto(s)
Fijación del Nitrógeno , Filogenia , Nódulos de las Raíces de las Plantas , Simbiosis , Simbiosis/genética , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Evolución Molecular , Evolución Biológica , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/microbiología
11.
Appl Plant Sci ; 12(2): e11575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638614

RESUMEN

Premise: Digitized biodiversity data offer extensive information; however, obtaining and processing biodiversity data can be daunting. Complexities arise during data cleaning, such as identifying and removing problematic records. To address these issues, we created the R package Geographic And Taxonomic Occurrence R-based Scrubbing (gatoRs). Methods and Results: The gatoRs workflow includes functions that streamline downloading records from the Global Biodiversity Information Facility (GBIF) and Integrated Digitized Biocollections (iDigBio). We also created functions to clean downloaded specimen records. Unlike previous R packages, gatoRs accounts for differences in download structure between GBIF and iDigBio and allows for user control via interactive cleaning steps. Conclusions: Our pipeline enables the scientific community to process biodiversity data efficiently and is accessible to the R coding novice. We anticipate that gatoRs will be useful for both established and beginning users. Furthermore, we expect our package will facilitate the introduction of biodiversity-related concepts into the classroom via the use of herbarium specimens.

12.
Nat Genet ; 56(4): 710-720, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491323

RESUMEN

Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.


Asunto(s)
Poaceae , Tetraploidía , Poaceae/genética , Poliploidía , Genómica , Transcriptoma/genética , Genoma de Planta/genética , Evolución Molecular
13.
New Phytol ; 242(3): 1363-1376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450804

RESUMEN

Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.


Asunto(s)
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Metilación de ADN/genética , Poliploidía , Genoma de Planta
14.
Proc Natl Acad Sci U S A ; 121(14): e2314231121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527197

RESUMEN

Despite experimental and observational studies demonstrating that biodiversity enhances primary productivity, the best metric for predicting productivity at broad geographic extents-functional trait diversity, phylogenetic diversity, or species richness-remains unknown. Using >1.8 million tree measurements from across eastern US forests, we quantified relationships among functional trait diversity, phylogenetic diversity, species richness, and productivity. Surprisingly, functional trait and phylogenetic diversity explained little variation in productivity that could not be explained by tree species richness. This result was consistent across the entire eastern United States, within ecoprovinces, and within data subsets that controlled for biomass or stand age. Metrics of functional trait and phylogenetic diversity that were independent of species richness were negatively correlated with productivity. This last result suggests that processes that determine species sorting and packing are likely important for the relationships between productivity and biodiversity. This result also demonstrates the potential confusion that can arise when interdependencies among different diversity metrics are ignored. Our findings show the value of species richness as a predictive tool and highlight gaps in knowledge about linkages between functional diversity and ecosystem functioning.


Asunto(s)
Biodiversidad , Bosques , Biomasa , Ecosistema , Filogenia , Estados Unidos
15.
Am J Bot ; 111(3): e16299, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38419145

RESUMEN

PREMISE: Astragalus (Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid-adapted clade and what sets it apart from close relatives with far less species richness. METHODS: Here, for the first time using extensive phylogenetic sampling, we asked whether (1) Astragalus is uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa. Then we tested whether the species diversity of Astragalus is attributable specifically to its predilection for (2) cold and arid habitats, (3) particular soils, or to (4) chromosome evolution. Finally, we tested (5) whether Astragalus originated in central Asia as proposed and (6) whether niche evolutionary shifts were subsequently associated with the colonization of other continents. RESULTS: Our results point to the importance of heterogeneity in the diversification of Astragalus, with upshifts associated with the earliest divergences but not strongly tied to any abiotic factor or biogeographic regionalization tested here. The only potential correlate with diversification we identified was chromosome number. Biogeographic shifts have a strong association with the abiotic environment and highlight the importance of central Asia as a biogeographic gateway. CONCLUSIONS: Our investigation shows the importance of phylogenetic and evolutionary studies of logistically challenging "mega-radiations." Our findings reject any simple key innovation behind high diversity and underline the often nuanced, multifactorial processes leading to species-rich clades.


Asunto(s)
Planta del Astrágalo , Ecosistema , Filogenia , Filogeografía , Evolución Biológica
16.
Mol Phylogenet Evol ; 192: 108014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199595

RESUMEN

The Scrub Mint clade(Lamiaceae) provides a unique system for investigating the evolutionary processes driving diversification in the North American Coastal Plain from both a systematic and biogeographic context. The clade comprisesDicerandra, Conradina, Piloblephis, Stachydeoma, and four species of the broadly defined genus Clinopodium(Mentheae; Lamiaceae), almost all of which are endemic to the North American Eastern Coastal Plain. Most species of this clade are threatened or endangered and restricted to sandhill or a mosaic of scrub habitats. We analyzed relationships in this clade to understand the evolution of the group and identify evolutionary mechanisms acting on the clade, with important implications for conservation. We used a target-capture method to sequence and analyze 238 nuclear loci across all species of scrub mints, reconstructed the phylogeny, and calculated gene tree concordance, gene tree estimation error, and reticulation indices for every node in the tree using ML methods. Phylogenetic networks were used to determine reticulation events. Our nuclear phylogenetic estimates were consistent with previous results, while greatly increasing the robustness of taxon sampling. The phylogeny resolved the full relationship between Dicerandra and Conradina and the less-studied members of the clade (Piloblephis, Stachydeoma, Clinopodium spp.). We found hotspots of gene tree discordance and reticulation throughout the tree, especially in perennial Dicerandra. Several instances of reticulation events were uncovered between annual and perennial Dicerandra, and within the Conradina + allies clade. Incomplete lineage sorting also likely contributed to phylogenetic discordance. These results clarify phylogenetic relationships in the clade and provide insight on important evolutionary drivers in the clade, such as hybridization. General relationships in the group were confirmed, while the large amount of gene tree discordance is likely due to reticulation across the phylogeny.


Asunto(s)
Lamiaceae , Mentha , Filogenia , Lamiaceae/genética , Mentha/genética , Análisis de Secuencia de ADN , Biodiversidad
17.
New Phytol ; 241(4): 1851-1865, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38229185

RESUMEN

The macroevolutionary processes that have shaped biodiversity across the temperate realm remain poorly understood and may have resulted from evolutionary dynamics related to diversification rates, dispersal rates, and colonization times, closely coupled with Cenozoic climate change. We integrated phylogenomic, environmental ordination, and macroevolutionary analyses for the cosmopolitan angiosperm family Rhamnaceae to disentangle the evolutionary processes that have contributed to high species diversity within and across temperate biomes. Our results show independent colonization of environmentally similar but geographically separated temperate regions mainly during the Oligocene, consistent with the global expansion of temperate biomes. High global, regional, and local temperate diversity was the result of high in situ diversification rates, rather than high immigration rates or accumulation time, except for Southern China, which was colonized much earlier than the other regions. The relatively common lineage dispersals out of temperate hotspots highlight strong source-sink dynamics across the cosmopolitan distribution of Rhamnaceae. The proliferation of temperate environments since the Oligocene may have provided the ecological opportunity for rapid in situ diversification of Rhamnaceae across the temperate realm. Our study illustrates the importance of high in situ diversification rates for the establishment of modern temperate biomes and biodiversity hotspots across spatial scales.


Asunto(s)
Evolución Biológica , Rhamnaceae , Ecosistema , Filogenia , Biodiversidad , Especiación Genética
18.
BMC Genom Data ; 25(1): 1, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166621

RESUMEN

OBJECTIVES: Escallonia (Escalloniaceae) belongs to the Escalloniales, a diverse clade of flowering plants with unclear placement in the tree of life. Escallonia species show impressive morphological and ecological diversity and are widely distributed across three hotspots of biodiversity in the Neotropics. To shed light on the genomic substrate of this radiation and the phylogenetic placement of Escalloniales as well as to generate useful data for comparative evolutionary genomics across flowering plants, we produced and annotated draft genomes for two species of Escallonia. DATA DESCRIPTION: Genomic DNA from E. rubra and E. herrerae was sequenced with Oxford Nanopore sequencing chemistry, generating 3.4 and 12 million sequence reads with an average read length of 9.4 and 9.1 Kb (approximately 31 and 111 Gb of sequence data), respectively. In addition, we generated Illumina 100-bp paired-end short read data for E. rubra (approximately 75 Gb of sequence data). The Escallonia rubra genome was 566 Mb, with 3,233 contigs and an N50 of 285 Kb. The assembled genome for E. herrerae was 994 Mp, with 5,760 contigs and an N50 of 317 Kb. The genome sequences were annotated with 31,038 (E. rubra) and 47,905 (E. herrerea) protein-coding gene models supported by transcriptome/protein evidence and/or Pfam domain content. BUSCO assessments indicated completeness levels of approximately 98% for the genome assemblies and 88% for the genome annotations.


Asunto(s)
Genómica , Magnoliopsida , Filogenia , Genoma , Transcriptoma , Magnoliopsida/genética
19.
Protoplasma ; 261(2): 227-243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37665420

RESUMEN

Monoterpenes are the main component in essential oils of Lippia alba. In this species, the chemical composition of essential oils varies with genome size: citral (geraniol and neral) is dominant in diploids and tetraploids, and linalool in triploids. Because environmental stress impacts various metabolic pathways, we hypothesized that stress responses in L. alba could alter the relationship between genome size and essential oil composition. Water stress affects the flowering, production, and reproduction of plants. Here, we evaluated the effect of water stress on morphophysiology, essential oil production, and the expression of genes related to monoterpene synthesis in diploid, triploid, and tetraploid accessions of L. alba cultivated in vitro for 40 days. First, using transcriptome data, we performed de novo gene assembly and identified orthologous genes using phylogenetic and clustering-based approaches. The expression of candidate genes related to terpene biosynthesis was estimated by real-time quantitative PCR. Next, we assessed the expression of these genes under water stress conditions, whereby 1% PEG-4000 was added to MS medium. Water stress modulated L. alba morphophysiology at all ploidal levels. Gene expression and essential oil production were affected in triploid accessions. Polyploid accessions showed greater growth and metabolic tolerance under stress compared to diploids. These results confirm the complex regulation of metabolic pathways such as the production of essential oils in polyploid genomes. In addition, they highlight aspects of genotype and environment interactions, which may be important for the conservation of tropical biodiversity.


Asunto(s)
Monoterpenos Acíclicos , Lippia , Aceites Volátiles , Verbenaceae , Lippia/genética , Lippia/química , Triploidía , Deshidratación , Filogenia , Aceites Volátiles/química
20.
Plant J ; 117(4): 1191-1205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37997015

RESUMEN

Polyploidy is an important evolutionary process throughout eukaryotes, particularly in flowering plants. Duplicated gene pairs (homoeologs) in allopolyploids provide additional genetic resources for changes in molecular, biochemical, and physiological mechanisms that result in evolutionary novelty. Therefore, understanding how divergent genomes and their regulatory networks reconcile is vital for unraveling the role of polyploidy in plant evolution. Here, we compared the leaf transcriptomes of recently formed natural allotetraploids (Tragopogon mirus and T. miscellus) and their diploid parents (T. porrifolius X T. dubius and T. pratensis X T. dubius, respectively). Analysis of 35 400 expressed loci showed a significantly higher level of transcriptomic additivity compared to old polyploids; only 22% were non-additively expressed in the polyploids, with 5.9% exhibiting transgressive expression (lower or higher expression in the polyploids than in the diploid parents). Among approximately 7400 common orthologous regions (COREs), most loci in both allopolyploids exhibited expression patterns that were vertically inherited from their diploid parents. However, 18% and 20.3% of the loci showed novel expression bias patterns in T. mirus and T. miscellus, respectively. The expression changes of 1500 COREs were explained by cis-regulatory divergence (the condition in which the two parental subgenomes do not interact) between the diploid parents, whereas only about 423 and 461 of the gene expression changes represent trans-effects (the two parental subgenomes interact) in T. mirus and T. miscellus, respectively. The low degree of both non-additivity and trans-effects on gene expression may present the ongoing evolutionary processes of the newly formed Tragopogon polyploids (~80-90 years).


Asunto(s)
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Diploidia , Poliploidía , Evolución Molecular , Genoma de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA