Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Small ; 19(41): e2206999, 2023 Oct.
Article En | MEDLINE | ID: mdl-37317016

Solid-state proton conductors based on the use of metal-organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 - anions shows superprotonic conductivity (6.3 × 10-2  S cm-1 ) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/NH···O distances below 2.6 Å.

2.
Chem Commun (Camb) ; 59(57): 8826-8829, 2023 Jul 13.
Article En | MEDLINE | ID: mdl-37358367

We report an iridium system constructed around a long-tethered PGeP ligand that facilitates access to the less common germylene form, so far unreported for an 'NHC-type' Ge ligand. Its bonding is substantiated by computational studies and we have demonstrated its use for the catalytic dehydrogenation of formic acid, highlighting the potential of this underdeveloped type of ligand.


Formates , Iridium , Ligands
3.
J Hazard Mater ; 443(Pt B): 130270, 2023 02 05.
Article En | MEDLINE | ID: mdl-36332280

Porous monolithic microreactors show great promise in catalytic applications, but are usually based on non-renewable materials. Herein, we demonstrate a Ni/Au nanoparticle-decorated carbonized wood (Ni/Au-CW) monolithic membrane microreactor for the efficient reduction of 4-nitrophenol. The hierarchical porous wood structure supports uniformly distributed heterobimetallic Ni/Au nanoparticles. As a consequence of these two factors, both mass diffusion and electron transfer are enhanced, resulting in a superior reduction efficiency of 99.5% as the liquor flows through the optimised Ni/Au-CW membrane. The reaction mechanism was investigated by electron paramagnetic resonance spectroscopy and density functional theory calculations. The proposed attraction-repulsion mechanism facilitated by the bimetallic nanoparticles has been ascribed to the different electronegativities of Ni and Au. The Ni/Au-CW membrane exhibits excellent catalytic performance and could be applicable to other catalytic transformations.


Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Wood , Nitrophenols/chemistry
4.
Chem Sci ; 13(18): 5268-5276, 2022 May 11.
Article En | MEDLINE | ID: mdl-35655554

More than four decades ago, a complex identified as the planar homoleptic lithium nickelate "Li3NiPh3(solv)3" was reported by Taube and co-workers. This and subsequent reports involving this complex have lain dormant since; however, the absence of an X-ray diffraction structure leaves questions as to the nature of the Ni-PhLi bonding and the coordination geometry at Ni. By systematically evaluating the reactivity of Ni(COD)2 with PhLi under different conditions, we have found that this classical molecule is instead a unique octanuclear complex, [{Li3(solv)2Ph3Ni}2(µ-η2:η2-C6H4)] (5). This is supported by X-ray crystallography and solution-state NMR studies. A theoretical bonding analysis from NBO, QTAIM, and ELI perspectives reveals extreme back-bonding to the bridging C6H4 ligand resulting in dimetallabicyclobutane character, the lack of a Ni-Ni bond, and pronounced σ-bonding between the phenyl carbanions and nickel, including a weak σC-Li → sNi interaction with the C-Li bond acting as a σ-donor. Employing PhNa led to the isolation of [Na2(solv)3Ph2NiCOD]2 (7) and [Na2(solv)3Ph2(NaC8H11)Ni(COD)]2 (8), which lack the benzyne-derived ligand. These findings provide new insights into the synthesis, structure, bonding and reactivity of heterobimetallic nickelates, whose prevalence in organonickel chemistry and catalysis is likely greater than previously believed.

5.
Eur J Inorg Chem ; 2021(34): 3488-3498, 2021 Sep 14.
Article En | MEDLINE | ID: mdl-34690540

Cooperative reactivity between transition metals and ligands, or between two metals, has created significant opportunities for the development of new transformations that would be difficult to carry out with a single metal. Here we explore cooperativity between transition metals and divalent heavier group 14 elements (tetrylenes), a less-explored facet of the field of cooperativity. Tetrylenes combine their strong σ-donor properties with an empty p-orbital that can accept electron density. This ambiphilicity has allowed them to form metal tetrylene and metallotetrylene complexes that place a reactive site adjacent to the metal. We have selected examples to demonstrate what has been achieved so far regarding cooperative reactivity, as this already spans metal-, tetrylene- or multi-site-centred bond cleavage, cycloaddition, migration, metathesis, and insertion. We also highlight some challenges that need to be overcome for this cooperativity to make it to catalysis.

6.
Nat Rev Chem ; 5(8): 518-519, 2021 Aug.
Article En | MEDLINE | ID: mdl-37117582
7.
J Am Chem Soc ; 142(25): 10936-10941, 2020 06 24.
Article En | MEDLINE | ID: mdl-32520556

Although the catalytic carboxylation of unactivated alkyl electrophiles has reached remarkable levels of sophistication, the intermediacy of (phenanthroline)Ni(I)-alkyl species-complexes proposed in numerous Ni-catalyzed reductive cross-coupling reactions-has been subject to speculation. Herein we report the synthesis of such elusive (phenanthroline)Ni(I) species and their reactivity with CO2, allowing us to address a long-standing question related to Ni-catalyzed carboxylation reactions.


Carbon Dioxide/chemistry , Coordination Complexes/chemistry , Nickel/chemistry , Phenanthrolines/chemistry , Carboxylic Acids/chemical synthesis , Catalysis , Coordination Complexes/chemical synthesis , Ligands , Phenanthrolines/chemical synthesis
8.
Angew Chem Int Ed Engl ; 59(11): 4370-4374, 2020 Mar 09.
Article En | MEDLINE | ID: mdl-31910307

A modular, site-selective 1,2-dicarbofunctionalization of vinyl boronates with organic halides through dual catalysis is described. This reaction proceeds under mild conditions and is characterized by excellent chemo- and regioselectivity. It thus represents a complementary new technique for preparing densely functionalized alkyl boron architectures from simple and accessible precursors.

10.
J Am Chem Soc ; 140(28): 8771-8780, 2018 07 18.
Article En | MEDLINE | ID: mdl-29909614

Monodentate phosphine ligands are frequently employed in the Ni-catalyzed C-O functionalization of aryl esters. However, the extensive body of preparative work on such reactions contrasts with the lack of information concerning the structure and reactivity of the relevant nickel intermediates. In fact, experimental evidence for a seemingly trivial oxidative addition into the C-O bond of aryl esters with monodentate phosphines and low-valent nickel complexes still remains elusive. Herein, we report a combined experimental and theoretical study on the Ni(0)/PCy3-catalyzed silylation of aryl pivalates with CuF2/CsF additives that reveals the involvement of unorthodox dinickel oxidative addition complexes in C-O bond cleavage and their relevance in C-Si bond formation. We have obtained a mechanistic picture that clarifies the role of the additives and demonstrates that dinickel complexes act as reservoirs of the propagating monomeric nickel complexes by disproportionation. We believe this study will serve as a useful entry point to unravelling the mechanistic underpinnings of other related Ni-catalyzed C-O functionalization reactions employing monodentate phosphines.

11.
Angew Chem Int Ed Engl ; 56(24): 6708-6710, 2017 06 06.
Article En | MEDLINE | ID: mdl-28466981

The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds.

...