Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 98
1.
Article En | MEDLINE | ID: mdl-38782649

The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.

2.
ACS Synth Biol ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38787439

Saccharomyces boulardii (Sb) is an emerging probiotic chassis for delivering biomolecules to the mammalian gut, offering unique advantages as the only eukaryotic probiotic. However, precise control over gene expression and gut residence time in Sb have remained challenging. To address this, we developed five ligand-responsive gene expression systems and repaired galactose metabolism in Sb, enabling inducible gene expression in this strain. Engineering these systems allowed us to construct AND logic gates, control the surface display of proteins, and turn on protein production in the mouse gut in response to dietary sugar. Additionally, repairing galactose metabolism expanded Sb's habitat within the intestines and resulted in galactose-responsive control over gut residence time. This work opens new avenues for precise dosing of therapeutics by Sb via control over its in vivo gene expression levels and localization within the gastrointestinal tract.

3.
J Am Chem Soc ; 146(3): 1860-1873, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38215281

Biotin synthase (BioB) is a member of the Radical SAM superfamily of enzymes that catalyzes the terminal step of biotin (vitamin B7) biosynthesis, in which it inserts a sulfur atom in desthiobiotin to form a thiolane ring. How BioB accomplishes this difficult reaction has been the subject of much controversy, mainly around the source of the sulfur atom. However, it is now widely accepted that the sulfur atom inserted to form biotin stems from the sacrifice of the auxiliary 2Fe-2S cluster of BioB. Here, we bioinformatically explore the diversity of BioBs available in sequence databases and find an unexpected variation in the coordination of the auxiliary iron-sulfur cluster. After in vitro characterization, including the determination of biotin formation and representative crystal structures, we report a new type of BioB utilized by virtually all obligate anaerobic organisms. Instead of a 2Fe-2S cluster, this novel type of BioB utilizes an auxiliary 4Fe-5S cluster. Interestingly, this auxiliary 4Fe-5S cluster contains a ligated sulfide that we propose is used for biotin formation. We have termed this novel type of BioB, Type II BioB, with the E. coli 2Fe-2S cluster sacrificial BioB representing Type I. This surprisingly ubiquitous Type II BioB has implications for our understanding of the function and evolution of Fe-S clusters in enzyme catalysis, highlighting the difference in strategies between the anaerobic and aerobic world.


Escherichia coli Proteins , Iron-Sulfur Proteins , Escherichia coli/metabolism , Biotin/chemistry , Escherichia coli Proteins/chemistry , Sulfur/chemistry , Sulfurtransferases/metabolism , Iron-Sulfur Proteins/chemistry
4.
J Am Acad Dermatol ; 90(3): 494-503, 2024 Mar.
Article En | MEDLINE | ID: mdl-37951245

BACKGROUND: Orismilast is a novel oral phosphodiesterase-4 (PDE4) B/D inhibitor being investigated as a potential treatment for moderate-to-severe psoriasis. OBJECTIVE: To evaluate efficacy and safety of orismilast modified-release formulation in moderate-to-severe psoriasis. METHODS: This multicenter, randomized (1:1:1:1 to 20, 30, 40 mg orismilast or placebo, twice daily), double-blinded, placebo-controlled, parallel-group, phase 2b, 16-week, dose-ranging study evaluated orismilast in adults with moderate-to-severe plaque psoriasis (NCT05190419). Efficacy end points were analyzed using multiple imputation. RESULTS: Of 202 randomized patients, baseline characteristics were balanced across arms, except greater severe disease proportions for orismilast vs placebo. Orismilast showed significant improvements in the primary end point, percentage change in Psoriasis Area and Severity Index (PASI), from baseline to week 16 (orismilast -52.6% to -63.7% and placebo, -17.3%; all P <.001). Greater proportions receiving orismilast achieved PASI75 (39.5%-49.0%; P <.05) and PASI90 (22.0%-28.3%; P <.05 for 20 and 40 mg) vs placebo (PASI75, 16.5% and PASI90, 8.3%) at week 16. Safety findings were as expected with PDE4 inhibition; dose-dependent tolerability effects observed. LIMITATIONS: Small sample size, disease severity imbalance between groups, limited duration and diversity in study population. CONCLUSION: Orismilast demonstrated greater efficacy vs placebo and a safety profile in line with PDE4 inhibition.


Phosphodiesterase 4 Inhibitors , Psoriasis , Adult , Humans , Treatment Outcome , Severity of Illness Index , Double-Blind Method , Psoriasis/diagnosis , Psoriasis/drug therapy , Phosphodiesterase 4 Inhibitors/adverse effects
5.
Dermatol Ther (Heidelb) ; 13(12): 3031-3042, 2023 Dec.
Article En | MEDLINE | ID: mdl-37924462

For decades, topical corticosteroids have been the mainstay of treatment for mild-to-moderate inflammatory skin diseases, even though only short-term use is approved for these agents and systemic inflammation is not addressed. Increased understanding of the immunopathogenesis of these conditions, especially for psoriasis and atopic dermatitis, has facilitated the development of antibody-based drugs that neutralize single key cytokines or their associated receptors, such as interleukin (IL)-17A/F, IL-23, and IL-17RA in psoriasis and IL-13 and IL-4Rα in atopic dermatitis. However, oral therapy is still preferred by many patients owing to the ease of use and needle-free administration. Phosphodiesterase 4 (PDE4) inhibitors have been approved for both oral and topical use for inflammatory skin diseases. In this review, we present a summary of an emerging class of selective PDE4B/D inhibitors under clinical development and compare the differences in selectivity of this new generation of PDE4 inhibitors with the less selective currently approved PDE4 inhibitors.

6.
Sci Rep ; 13(1): 12506, 2023 08 02.
Article En | MEDLINE | ID: mdl-37532747

In this study we performed a step-wise optimization of biologically active IL-2 for delivery using E. coli Nissle 1917. Engineering of the strain was coupled with an in vitro cell assay to measure the biological activity of microbially produced IL-2 (mi-IL2). Next, we assessed the immune modulatory potential of mi-IL2 using a 3D tumor spheroid model demonstrating a strong effect on immune cell activation. Finally, we evaluated the anticancer properties of the engineered strain in a murine CT26 tumor model. The engineered strain was injected intravenously and selectively colonized tumors. The treatment was well-tolerated, and tumors of treated mice showed a modest reduction in tumor growth rate, as well as significantly elevated levels of IL-2 in the tumor. This work demonstrates a workflow for researchers interested in engineering E. coli Nissle for a new class of microbial therapy against cancer.


Immunotherapy , Interleukin-2 , Neoplasms , Animals , Mice , Escherichia coli , Interleukin-2/genetics , Interleukin-2/pharmacology , Neoplasms/therapy
7.
Nat Commun ; 14(1): 2673, 2023 05 09.
Article En | MEDLINE | ID: mdl-37160893

Candida species overgrowth in the human gut is considered a prerequisite for invasive candidiasis, but our understanding of gut bacteria promoting or restricting this overgrowth is still limited. By integrating cross-sectional mycobiome and shotgun metagenomics data from the stool of 75 male and female cancer patients at risk but without systemic candidiasis, bacterial communities in high Candida samples display higher metabolic flexibility yet lower contributional diversity than those in low Candida samples. We develop machine learning models that use only bacterial taxa or functional relative abundances to predict the levels of Candida genus and species in an external validation cohort with an AUC of 78.6-81.1%. We propose a mechanism for intestinal Candida overgrowth based on an increase in lactate-producing bacteria, which coincides with a decrease in bacteria that regulate short chain fatty acid and oxygen levels. Under these conditions, the ability of Candida to harness lactate as a nutrient source may enable Candida to outcompete other fungi in the gut.


Candida , Lung Neoplasms , Humans , Female , Male , Cross-Sectional Studies , Dysbiosis , Lactic Acid
8.
FEMS Microbiol Lett ; 3702023 01 17.
Article En | MEDLINE | ID: mdl-37028942

The expanding knowledge of the health impacts of the metabolic activities of the gut microbiota reinforces the current interest in engineered probiotics. Tryptophan metabolites, in particular indole lactic acid (ILA), are attractive candidates as potential therapeutic agents. ILA is a promising compound with multiple beneficial effects, including amelioration colitis in rodent models of necrotizing enterocolitis, as well as improved infant immune system maturation. In this work, we engineered and characterized in vitro and in vivo an Escherichia coli Nissle 1917 strain that produces ILA. The 2-step metabolic pathway comprises aminotransferases native of E. coli and a dehydrogenase introduced from Bifidobacterium longum subspecies infantis. Our results show a robust engineered probiotic that produces 73.4 ± 47.2 nmol and 149 ± 123.6 nmol of ILA per gram of fecal and cecal matter, respectively, three days after colonization in a mouse model. In addition, hereby is reported an engineered-probiotic-related increase of ILA in the systemic circulation of the treated mice. This strain serves as proof of concept for the transfer of capacity to produce ILA in vivo and as ILA emerges as a potent microbial metabolite against gastrointestinal inflammation, further development of this strain offers efficient options for ILA-focused therapeutic interventions in situ.


Colitis , Probiotics , Mice , Animals , Escherichia coli/genetics , Colitis/therapy , Colitis/microbiology , Feces/microbiology , Cecum , Indoles
9.
Metab Eng ; 76: 179-192, 2023 03.
Article En | MEDLINE | ID: mdl-36738854

Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.


Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mutation , 1-Butanol/metabolism , Membrane Transport Proteins/genetics , Repressor Proteins/genetics , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
10.
Cell ; 186(3): 469-478, 2023 02 02.
Article En | MEDLINE | ID: mdl-36657442

The current food production system is negatively impacting planetary and human health. A transition to a sustainable and fair food system is urgently needed. Microorganisms are likely enablers of this process, as they can produce delicious and healthy microbial foods with low environmental footprints. We review traditional and current approaches to microbial foods, such as fermented foods, microbial biomass, and food ingredients derived from microbial fermentations. We discuss how future advances in science-driven fermentation, synthetic biology, and sustainable feedstocks enable a new generation of microbial foods, potentially impacting the sustainability, resilience, and health effects of our food system.


Fermented Foods , Food Microbiology , Humans , Fermentation , Food , Sustainable Growth , Conservation of Natural Resources
11.
Metab Eng ; 76: 39-49, 2023 03.
Article En | MEDLINE | ID: mdl-36639019

L-Lipoic acid (LA) is an important antioxidant with various industrial applications as a nutraceutical and therapeutic. Currently, LA is produced by chemical synthesis. Cell factory development is complex as LA and its direct precursors only occur naturally in protein-bound forms. Here we report a rationally engineered LA cell factory and demonstrate de novo free LA production from glucose for the first time in E. coli. The pathway represents a significant challenge as the three key enzymes, native Octanoyltransferase (LipB) and Lipoyl Synthase (LipA), and heterologous Lipoamidase (LpA), are all toxic to overexpress in E. coli. To overcome the toxicity of LipB, functional metagenomic selection was used to identify a highly active and non-toxic LipB and LipA from S. liquefaciens. Using high throughput screening, we balanced translation initiation rates and dual, orthogonal induction systems for the toxic genes, LipA and LpA. The optimized strain yielded 2.5 mg free LA per gram of glucose in minimal media, expressing carefully balanced LipB and LipA, Enterococcus faecalis LpA, and a truncated, native, Dihydrolipoyllysine-residue acetyltransferase (AceF) lipoylation domain. When the optimized cell factory strain was cultivated in a fed-batch fermentation, a titer of 87 mg/L free LA in the supernatant was reached after 48 h. This titer is ∼3000-fold higher than previously reported free LA titer and ∼8-fold higher than the previous best total, protein-bound LA titer. The strategies presented here could be helpful in designing, constructing and balancing biosynthetic pathways that harbor toxic enzymes with protein-bound intermediates or products.


Escherichia coli Proteins , Thioctic Acid , Escherichia coli/metabolism , Bacterial Proteins/genetics , Metabolic Engineering , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
12.
J Eur Acad Dermatol Venereol ; 37(4): 721-729, 2023 Apr.
Article En | MEDLINE | ID: mdl-36527389

BACKGROUND: There remains an unmet need for oral medications that are safe and efficacious for long-term management of chronic inflammatory skin diseases (CISD). Inhibition of phosphodiesterase 4 (PDE4) can modulate a broad range of pro-inflammatory cytokines that play a major role in CISD pathogenesis. Orismilast is a second generation PDE4 inhibitor in clinical development for CISD treatment. OBJECTIVES: The objective of this study was to examine the PDE4 enzymatic activity and anti-inflammatory effects of orismilast in vitro, ex vivo, and in vivo. METHODS: The PDE1-11 enzymatic activity of orismilast was tested in vitro using a single concentration of 308 nM orismilast. The PDE4 selectivity and inhibitory potency was further examined in a radiometric assay. Orismilast was tested on human whole blood and human peripheral blood mononuclear cells (PBMC) to determine effects on its cytokine secretion and inhibition profile ex vivo. Orismilast was orally administered in a murine model of chronic oxazolone-induced ear skin inflammation. Ear thickness, a marker of inflammation, and inflammatory cytokines were analysed. RESULTS: Orismilast selectively inhibited PDE4 and demonstrated potent inhibition of PDE4B and PDE4D subtype splice variants in vitro. Orismilast inhibited whole blood and PBMC production of tumour necrosis factor α (TNFα), and the secretion of T-helper (Th)1 (TNFα and IFNγ), Th17 (IL-22 and IL-23), and Th2 (IL-4, IL-5, and IL-13) related cytokines in PBMC. In vivo, 10 and 30 mg/kg doses of orismilast significantly reduced ear thickness and inflammation markers (p < 0.0001, respectively). CONCLUSION: Orismilast displayed selective and potent PDE4 inhibition and broad-spectrum anti-inflammatory activity in several pre-clinical models. The results of the study support clinical development of oral orismilast as a novel treatment option for CISD including psoriasis, atopic dermatitis, and hidradenitis suppurativa.


Phosphodiesterase 4 Inhibitors , Humans , Mice , Animals , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha , Leukocytes, Mononuclear , Inflammation/drug therapy , Anti-Inflammatory Agents/therapeutic use , Cytokines
13.
Transplantation ; 107(5): 1136-1138, 2023 05 01.
Article En | MEDLINE | ID: mdl-36584380

BACKGROUND: Immunocompromised patients have been at an increased risk of succumbing to coronavirus disease 2019 (COVID-19) since the beginning of the pandemic. METHODS: Here, we analyzed mortality and case fatality data from dialysis and kidney transplant patients, and compared each with an age-matched subgroup of the general population. RESULTS: We found that both patients on dialysis and kidney transplant patients remain at increased risk of succumbing to COVID-19 despite all available countermeasures. CONCLUSIONS: The analyses underline the need for additional protection for this vulnerable population.


COVID-19 , Kidney Transplantation , Humans , COVID-19/epidemiology , Renal Dialysis/adverse effects , Kidney Transplantation/adverse effects , Pandemics/prevention & control , Immunocompromised Host , Transplant Recipients
14.
J Eur Acad Dermatol Venereol ; 37(4): 711-720, 2023 Apr.
Article En | MEDLINE | ID: mdl-36478476

BACKGROUND: Orismilast is a high-potency phosphodiesterase 4 (PDE4) inhibitor with enhanced selectivity for the PDE4B and PDE4D subtypes. OBJECTIVES: The objective of this phase 2a trial was to examine the efficacy and safety of orismilast for psoriasis using a first-generation immediate-release (IR) formulation. The objective of the subsequent phase 1 trial was to test new formulations designed to minimize the gastrointestinal (GI)-related adverse events (AEs) observed with the first-generation IR formulation. We examined the following: (1) pharmacokinetic (PK) properties of orismilast modified release (MR) and IR, (2) food effects on PK properties of orismilast MR or IR, (3) safety of orismilast MR compared to placebo. METHODS: In a phase 2a prospective, randomized, double-blind, placebo-controlled trial, patients with moderate-to-severe psoriasis were randomized to receive 30 mg oral orismilast IR or placebo over 16 weeks. The single-site phase 1 trial consisted of three parts: (1) participants received a single 30 mg dose of orismilast MR and IR (open-label), (2) participants received 30 mg orismilast MR or IR under either fasting condition, following a high-fat meal or low-fat meal (open-label) and (3) participants received up to 60 mg orismilast MR twice-daily or a placebo for 17 days (double-blind). RESULTS: In the phase 2a trial, treatment with orismilast IR significantly improved the mean Psoriasis Area Severity Index score at week 16 compared to placebo. The phase 1 trial revealed comparable PK properties of the orismilast MR and IR formulations, with participants in the orismilast MR group experiencing fewer GI-related AEs than those receiving orismilast IR (16.7% vs. 33.3%). CONCLUSION: Orismilast IR displayed higher efficacy compared to placebo in patients with moderate-to-severe psoriasis at week 16. Orismilast MR had similar PK properties and fewer GI disorders compared to the IR formulation in healthy participants. Future development of orismilast will be based on the MR formulation.


Phosphodiesterase 4 Inhibitors , Psoriasis , Humans , Prospective Studies , Psoriasis/drug therapy , Phosphodiesterase 4 Inhibitors/adverse effects , Tablets/therapeutic use , Fasting , Double-Blind Method , Treatment Outcome
15.
BMC Bioinformatics ; 23(1): 566, 2022 Dec 30.
Article En | MEDLINE | ID: mdl-36585633

BACKGROUND: Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium used to treat various gastrointestinal diseases. EcN is increasingly being used as a chassis for the engineering of advanced microbiome therapeutics. To aid in future engineering efforts, our aim was to construct an updated metabolic model of EcN with extended secondary metabolite representation. RESULTS: An updated high-quality genome-scale metabolic model of EcN, iHM1533, was developed based on comparison with 55 E. coli/Shigella reference GEMs and manual curation, including expanded secondary metabolite pathways (enterobactin, salmochelins, aerobactin, yersiniabactin, and colibactin). The model was validated and improved using phenotype microarray data, resulting in an 82.3% accuracy in predicting growth phenotypes on various nutrition sources. Flux variability analysis with previously published 13C fluxomics data validated prediction of the internal central carbon fluxes. A standardised test suite called Memote assessed the quality of iHM1533 to have an overall score of 89%. The model was applied by using constraint-based flux analysis to predict targets for optimisation of secondary metabolite production. Modelling predicted design targets from across amino acid metabolism, carbon metabolism, and other subsystems that are common or unique for influencing the production of various secondary metabolites. CONCLUSION: iHM1533 represents a well-annotated metabolic model of EcN with extended secondary metabolite representation. Phenotype characterisation and the iHM1533 model provide a better understanding of the metabolic capabilities of EcN and will help future metabolic engineering efforts.


Escherichia coli , Probiotics , Escherichia coli/metabolism , Metabolic Networks and Pathways/genetics , Metabolic Engineering
16.
Eur J Clin Microbiol Infect Dis ; 41(2): 245-252, 2022 Feb.
Article En | MEDLINE | ID: mdl-34734346

There is evidence that Staphylococcus aureus colonisation is linked to severity of atopic dermatitis. As no gold standard for S. aureus sampling on atopic dermatitis skin lesions exists, this study compared three commonly used methods. In addition, effectiveness of standard skin disinfection to remove S. aureus colonisation from these inflamed skin lesions was investigated. In 30 atopic dermatitis patients, three different S. aureus sampling methods, i.e. detergent scrubbing, moist swabbing and tape stripping, were performed on naïve and disinfected skin lesions. Two different S. aureus selective media, mannitol salt agar and chromID agar, were used for bacterial growing. Quantifying the S. aureus load varied significantly between the different sampling methods on naïve skin lesions ranging from mean 51 to 1.5 × 104 CFU/cm2 (p < 0.001). The qualitative detection on naïve skin was highest with the two detergent-based techniques (86% each), while for tape stripping, this value was 67% (all on chromID agar). In comparison, mannitol salt agar was less sensitive (p < 0.001). The disinfection of the skin lesions led to a significant reduction of the S. aureus load (p < 0.05) but no complete eradication in the case of previously positive swab. The obtained data highlight the importance of the selected sampling method and consecutive S. aureus selection agar plates to implement further clinical studies for the effectiveness of topical anti-staphylococcal antibiotics. Other disinfection regimes should be considered in atopic dermatitis patients when complete de-colonisation of certain skin areas is required, e.g. for surgical procedures.


Dermatitis, Atopic/drug therapy , Skin Diseases/drug therapy , Skin Diseases/microbiology , Staphylococcal Skin Infections/drug therapy , Staphylococcal Skin Infections/microbiology , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Bacteriological Techniques/methods , Dermatitis, Atopic/diagnosis , Diagnostic Tests, Routine , Eczema , Female , Humans , Male , Middle Aged , Severity of Illness Index , Skin/microbiology , Skin Diseases/diagnosis , Staphylococcus aureus , Young Adult
17.
Microlife ; 3: uqac006, 2022.
Article En | MEDLINE | ID: mdl-37223362

Human Milk Oligosaccharides (HMOs) are glycans with prebiotic properties known to drive microbial selection in the infant gut, which in turn influences immune development and future health. Bifidobacteria are specialized in HMO degradation and frequently dominate the gut microbiota of breastfed infants. However, some species of Bacteroidaceae also degrade HMOs, which may prompt selection also of these species in the gut microbiota. To investigate to what extent specific HMOs affect the abundance of naturally occurring Bacteroidaceae species in a complex mammalian gut environment, we conducted a study in 40 female NMRI mice administered three structurally different HMOs, namely 6'sialyllactose (6'SL, n = 8), 3-fucosyllactose (3FL, n = 16), and Lacto-N-Tetraose (LNT, n = 8), through drinking water (5%). Compared to a control group receiving unsupplemented drinking water (n = 8), supplementation with each of the HMOs significantly increased both the absolute and relative abundance of Bacteroidaceae species in faecal samples and affected the overall microbial composition analyzed by 16s rRNA amplicon sequencing. The compositional differences were mainly attributed to an increase in the relative abundance of the genus Phocaeicola (formerly Bacteroides) and a concomitant decrease of the genus Lacrimispora (formerly Clostridium XIVa cluster). During a 1-week washout period performed specifically for the 3FL group, this effect was reversed. Short-chain fatty acid analysis of faecal water revealed a decrease in acetate, butyrate and isobutyrate levels in animals supplemented with 3FL, which may reflect the observed decrease in the Lacrimispora genus. This study highlights HMO-driven Bacteroidaceae selection in the gut environment, which may cause a reduction of butyrate-producing clostridia.

18.
PLoS One ; 16(12): e0260958, 2021.
Article En | MEDLINE | ID: mdl-34855904

SARS-CoV-2 variants are emerging with potential increased transmissibility highlighting the great unmet medical need for new therapies. Niclosamide is a potent anti-SARS-CoV-2 agent that has advanced in clinical development. We validate the potent antiviral efficacy of niclosamide in a SARS-CoV-2 human airway model. Furthermore, niclosamide remains its potency against the D614G, Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants. Our data further support the potent anti-SARS-CoV-2 properties of niclosamide and highlights its great potential as a therapeutic agent for COVID-19.


Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Niclosamide/therapeutic use , SARS-CoV-2/drug effects , Animals , Caco-2 Cells , Chlorocebus aethiops , Humans , Inhibitory Concentration 50 , Respiratory Mucosa/virology , Vero Cells
19.
ACS Synth Biol ; 10(12): 3359-3368, 2021 12 17.
Article En | MEDLINE | ID: mdl-34842418

Advanced microbial therapeutics have great potential as a novel modality to diagnose and treat a wide range of diseases. Yet, to realize this potential, robust parts for regulating gene expression and consequent therapeutic activity in situ are needed. In this study, we characterized the expression level of more than 8000 variants of the Escherichia coli sigma factor 70 (σ70) promoter in a range of different environmental conditions and growth states using fluorescence-activated cell sorting and deep sequencing. Sampled conditions include aerobic and anaerobic culture in the laboratory as well as growth in several locations of the murine gastrointestinal tract. We found that σ70 promoters in E. coli generally maintain consistent expression levels across the murine gut (R2: 0.55-0.85, p value < 1 × 10-5), suggesting a limited environmental influence but a higher variability between in vitro and in vivo expression levels, highlighting the challenges of translating in vitro promoter activity to in vivo applications. Based on these data, we design the Schantzetta library, composed of eight promoters spanning a wide expression range and displaying a high degree of robustness in both laboratory and in vivo conditions (R2 = 0.98, p = 0.000827). This study provides a systematic assessment of the σ70 promoter activity in E. coli as it transits the murine gut leading to the definition of robust expression cassettes that could be a valuable tool for reliable engineering and development of advanced microbial therapeutics.


Escherichia coli Proteins , Escherichia coli , Animals , DNA-Directed RNA Polymerases/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Library , Mice , Promoter Regions, Genetic/genetics , Sigma Factor/genetics , Sigma Factor/metabolism , Transcription, Genetic
20.
PLoS Biol ; 19(10): e3001428, 2021 10.
Article En | MEDLINE | ID: mdl-34644300

To overcome CRISPR-Cas defense systems, many phages and mobile genetic elements (MGEs) encode CRISPR-Cas inhibitors called anti-CRISPRs (Acrs). Nearly all characterized Acrs directly bind Cas proteins to inactivate CRISPR immunity. Here, using functional metagenomic selection, we describe AcrIIA22, an unconventional Acr found in hypervariable genomic regions of clostridial bacteria and their prophages from human gut microbiomes. AcrIIA22 does not bind strongly to SpyCas9 but nonetheless potently inhibits its activity against plasmids. To gain insight into its mechanism, we obtained an X-ray crystal structure of AcrIIA22, which revealed homology to PC4-like nucleic acid-binding proteins. Based on mutational analyses and functional assays, we deduced that acrIIA22 encodes a DNA nickase that relieves torsional stress in supercoiled plasmids. This may render them less susceptible to SpyCas9, which uses free energy from negative supercoils to form stable R-loops. Modifying DNA topology may provide an additional route to CRISPR-Cas resistance in phages and MGEs.


Bacterial Proteins/metabolism , CRISPR-Associated Protein 9/metabolism , DNA/metabolism , Bacterial Proteins/chemistry , Contig Mapping , DNA, Superhelical/metabolism , Genome, Bacterial , Metagenomics , Plasmids , Prophages/genetics , Protein Multimerization
...