Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Neurosci ; 18: 1400963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184324

RESUMEN

In the adult murine brain, neural stem cells (NSCs) can be found in two main niches: the dentate gyrus (DG) and the subventricular zone (SVZ). In the DG, NSCs produce intermediate progenitors (IPs) that differentiate into excitatory neurons, while progenitors in the SVZ migrate to the olfactory bulb (OB), where they mainly differentiate into inhibitory interneurons. Neurogenesis, the process of generating new neurons, persists throughout life but decreases dramatically with aging, concomitantly with increased inflammation. Although many cell types, including microglia, undergo significant transcriptional changes, few such changes have been detected in neural progenitors. Furthermore, transcriptional profiles in progenitors from different neurogenic regions have not been compared on a single-cell level, and little is known about how they are affected by aging-related inflammation. We have generated a single cell RNA sequencing dataset enriched for IPs, which revealed that most aged neural progenitors only acquire minor transcriptional changes. However, progenitors set to become excitatory neurons decrease faster than others. In addition, a population in the aged SVZ, not detected in the OB, acquired major transcriptional activation related to immune responses. This suggests that differences in age related neurogenic decline between regions is not due to tissue differences but rather cell type specific intrinsic transcriptional programs, and that subset of neuroblasts in the SVZ react strongly to age related inflammatory cues.

2.
Blood Adv ; 8(11): 2933-2951, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38484189

RESUMEN

ABSTRACT: Natural killer (NK) cells represent the cytotoxic member within the innate lymphoid cell (ILC) family that are important against viral infections and cancer. Although the NK cell emergence from hematopoietic stem and progenitor cells through multiple intermediate stages and the underlying regulatory gene network has been extensively studied in mice, this process is not well characterized in humans. Here, using a temporal in vitro model to reconstruct the developmental trajectory of NK lineage, we identified an ILC-restricted oligopotent stage 3a CD34-CD117+CD161+CD45RA+CD56- progenitor population, that exclusively gave rise to CD56-expressing ILCs in vitro. We also further investigated a previously nonappreciated heterogeneity within the CD56+CD94-NKp44+ subset, phenotypically equivalent to stage 3b population containing both group-1 ILC and RORγt+ ILC3 cells, that could be further separated based on their differential expression of DNAM-1 and CD161 receptors. We confirmed that DNAM-1hi S3b and CD161hiCD117hi ILC3 populations distinctively differed in their expression of effector molecules, cytokine secretion, and cytotoxic activity. Furthermore, analysis of lineage output using DNA-barcode tracing across these stages supported a close developmental relationship between S3b-NK and S4-NK (CD56+CD94+) cells, whereas distant to the ILC3 subset. Cross-referencing gene signatures of culture-derived NK cells and other noncytotoxic ILCs with publicly available data sets validated that these in vitro stages highly resemble transcriptional profiles of respective in vivo ILC counterparts. Finally, by integrating RNA velocity and gene network analysis through single-cell regulatory network inference and clustering we unravel a network of coordinated and highly dynamic regulons driving the cytotoxic NK cell program, as a guide map for future studies on NK cell regulation.


Asunto(s)
Células Asesinas Naturales , Análisis de la Célula Individual , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Análisis de la Célula Individual/métodos , Linaje de la Célula , Inmunidad Innata , Diferenciación Celular
3.
Exp Hematol ; 127: 40-51, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37666355

RESUMEN

Hematopoietic stem cells (HSCs) enable hematopoietic stem cell transplantation (HCT) through their ability to replenish the entire blood system. Proliferation of HSCs is linked to decreased reconstitution potential, and a precise regulation of actively dividing HSCs is thus essential to ensure long-term functionality. This regulation becomes important in the transplantation setting where HSCs undergo proliferation followed by a gradual transition to quiescence and homeostasis. Although mouse HSCs have been well studied under homeostatic conditions, the mechanisms regulating HSC activation under stress remain unclear. Here, we analyzed the different phases of regeneration after transplantation. We isolated bone marrow from mice at 8 time points after transplantation and examined the reconstitution dynamics and transcriptional profiles of stem and progenitor populations. We found that regenerating HSCs initially produced rapidly expanding progenitors and displayed distinct changes in fatty acid metabolism and glycolysis. Moreover, we observed molecular changes in cell cycle, MYC and mTOR signaling in both HSCs, and progenitor subsets. We used a decay rate model to fit the temporal transcription profiles of regenerating HSCs and identified genes with progressively decreased or increased expression after transplantation. These genes overlapped to a large extent with published gene sets associated with key aspects of HSC function, demonstrating the potential of this data set as a resource for identification of novel HSC regulators. Taken together, our study provides a detailed functional and molecular characterization of HSCs at different phases of regeneration and identifies a gene set associated with the transition from proliferation to quiescence.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Ratones , Animales , Células Madre Hematopoyéticas/metabolismo , Médula Ósea , Ciclo Celular/genética , Transducción de Señal
4.
Blood Adv ; 7(18): 5325-5340, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37379274

RESUMEN

Knowledge of human fetal blood development and how it differs from adult blood is highly relevant to our understanding of congenital blood and immune disorders and childhood leukemia, of which the latter can originate in utero. Blood formation occurs in waves that overlap in time and space, adding to heterogeneity, which necessitates single-cell approaches. Here, a combined single-cell immunophenotypic and transcriptional map of first trimester primitive blood development is presented. Using CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), the molecular profile of established immunophenotype-gated progenitors was analyzed in the fetal liver (FL). Classical markers for hematopoietic stem cells (HSCs), such as CD90 and CD49F, were largely preserved, whereas CD135 (FLT3) and CD123 (IL3R) had a ubiquitous expression pattern capturing heterogenous populations. Direct molecular comparison with an adult bone marrow data set revealed that the HSC state was less frequent in FL, whereas cells with a lymphomyeloid signature were more abundant. An erythromyeloid-primed multipotent progenitor cluster was identified, potentially representing a transient, fetal-specific population. Furthermore, differentially expressed genes between fetal and adult counterparts were specifically analyzed, and a fetal core signature was identified. The core gene set could separate subgroups of acute lymphoblastic leukemia by age, suggesting that a fetal program may be partially retained in specific subgroups of pediatric leukemia. Our detailed single-cell map presented herein emphasizes molecular and immunophenotypic differences between fetal and adult blood cells, which are of significance for future studies of pediatric leukemia and blood development in general.


Asunto(s)
Leucemia , Multiómica , Adulto , Humanos , Niño , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Hematopoyesis/genética , Leucemia/metabolismo
6.
Stem Cell Reports ; 18(3): 736-748, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36868231

RESUMEN

Mouse hematopoietic stem cells (HSCs) have been extensively defined both molecularly and functionally at steady state, while regenerative stress induces immunophenotypical changes that limit high purity isolation and analysis. It is therefore important to identify markers that specifically label activated HSCs to gain further knowledge about their molecular and functional properties. Here, we assessed the expression of macrophage-1 antigen (MAC-1) on HSCs during regeneration following transplantation and observed a transient increase in MAC-1 expression during the early reconstitution phase. Serial transplantation experiments demonstrated that reconstitution potential was highly enriched in the MAC-1+ portion of the HSC pool. Moreover, in contrast to previous reports, we found that MAC-1 expression inversely correlates with cell cycling, and global transcriptome analysis showed that regenerating MAC-1+ HSCs share molecular features with stem cells with low mitotic history. Taken together, our results suggest that MAC-1 expression marks predominantly quiescent and functionally superior HSCs during early regeneration.


Asunto(s)
Hematopoyesis , Antígeno de Macrófago-1 , Ratones , Animales , Antígeno de Macrófago-1/metabolismo , Células Madre Hematopoyéticas/metabolismo , División Celular , Ciclo Celular
7.
Front Bioinform ; 2: 863676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304263

RESUMEN

COVID-19 forced humanity to think about new ways of working globally without physically being present with other people, and eXtended Reality (XR) systems (defined as Virtual Reality, Augmented Reality and Mixed Reality) offer a potentially elegant solution. Previously seen as mainly for gaming, commercial and research institutions are investigating XR solutions to solve real world problems from training, simulation, mental health, data analysis, and studying disease progression. More recently large corporations such as Microsoft and Meta have announced they are developing the Metaverse as a new paradigm to interact with the digital world. This article will look at how visualization can leverage the Metaverse in bioinformatics research, the pros and cons of this technology, and what the future may hold.

8.
Nat Commun ; 13(1): 4616, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941103

RESUMEN

As the scale of single-cell genomics experiments grows into the millions, the computational requirements to process this data are beyond the reach of many. Herein we present Scarf, a modularly designed Python package that seamlessly interoperates with other single-cell toolkits and allows for memory-efficient single-cell analysis of millions of cells on a laptop or low-cost devices like single-board computers. We demonstrate Scarf's memory and compute-time efficiency by applying it to the largest existing single-cell RNA-Seq and ATAC-Seq datasets. Scarf wraps memory-efficient implementations of a graph-based t-stochastic neighbour embedding and hierarchical clustering algorithm. Moreover, Scarf performs accurate reference-anchored mapping of datasets while maintaining memory efficiency. By implementing a subsampling algorithm, Scarf additionally has the capacity to generate representative sampling of cells from a given dataset wherein rare cell populations and lineage differentiation trajectories are conserved. Together, Scarf provides a framework wherein any researcher can perform advanced processing, subsampling, reanalysis, and integration of atlas-scale datasets on standard laptop computers. Scarf is available on Github: https://github.com/parashardhapola/scarf .


Asunto(s)
Genómica , Análisis de la Célula Individual , Algoritmos , Análisis por Conglomerados , Programas Informáticos , Secuenciación del Exoma
9.
Haematologica ; 107(12): 2884-2896, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35615926

RESUMEN

Even though hematopoietic stem cells (HSC) are characterized by their ability to self-renew and differentiate, they primarily reside in quiescence. Despite the immense importance of this quiescent state, its maintenance and regulation is still incompletely understood. Schlafen2 (Slfn2) is a cytoplasmic protein known to be involved in cell proliferation, differentiation, quiescence, interferon response, and regulation of the immune system. Interestingly, Slfn2 is highly expressed in primitive hematopoietic cells. In order to investigate the role of Slfn2 in the regulation of HSC we have studied HSC function in the elektra mouse model, where the elektra allele of the Slfn2 gene contains a point mutation causing loss of function of the Slfn2 protein. We found that homozygosity for the elektra allele caused a decrease of primitive hematopoietic compartments in murine bone marrow. We further found that transplantation of elektra bone marrow and purified HSC resulted in a significantly reduced regenerative capacity of HSC in competitive transplantation settings. Importantly, we found that a significantly higher fraction of elektra HSC (as compared to wild-type HSC) were actively cycling, suggesting that the mutation in Slfn2 increases HSC proliferation. This additionally caused an increased amount of apoptotic stem and progenitor cells. Taken together, our findings demonstrate that dysregulation of Slfn2 results in a functional deficiency of primitive hematopoietic cells, which is particularly reflected by a drastically impaired ability to reconstitute the hematopoietic system following transplantation and an increase in HSC proliferation. This study thus identifies Slfn2 as a novel and critical regulator of adult HSC and HSC quiescence.


Asunto(s)
Proteínas de Ciclo Celular , Hematopoyesis , Células Madre Hematopoyéticas , Animales , Ratones , Médula Ósea , Diferenciación Celular/genética , Proliferación Celular , Células Madre Hematopoyéticas/metabolismo , Proteínas de Ciclo Celular/genética
10.
iScience ; 25(1): 103603, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35005548

RESUMEN

Isolation of long-term hematopoietic stem cell (HSC) is possible by utilizing flow cytometry with multiple cell surface markers. However, those cell surface phenotypes do not represent functional HSCs after in vitro culture. Here we show that cultured HSCs express mast cell-related genes including Cd244. After in vitro culture, phenotypic HSCs were divided into CD244- and CD244+ subpopulations, and only CD244- cells that have low mast cell gene expression and maintain HSC-related genes sustain reconstitution potential. The result was same when HSCs were cultured in an efficient expansion medium containing polyvinyl alcohol. Chemically induced endoplasmic reticulum (ER) stress signal increased the CD244+ subpopulation, whereas ER stress suppression using a molecular chaperone, TUDCA, decreased CD244+ population, which was correlated to improved reconstitution output. These data suggest CD244 is a potent marker to exclude non-functional HSCs after in vitro culture thereby useful to elucidate mechanism of functional decline of HSCs during ex vivo treatment.

11.
Exp Hematol ; 105: 50-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757171

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare genetic disorder in which patients present a scarcity of erythroid precursors in an otherwise normocellular bone marrow. Most, but not all, patients carry mutations in ribosomal proteins such as RPS19, suggesting that compromised mRNA translation and ribosomal stress are pathogenic mechanisms causing depletion of erythroid precursors. To gain further insight to disease mechanisms in DBA, we performed a custom short hairpin RNA (shRNA) based screen against 750 genes hypothesized to affect DBA pathophysiology. Among the hits were two shRNAs against the erythroid specific heme-regulated eIF2α kinase (HRI), which is a negative regulator of mRNA translation. This study shows that shRNA-mediated HRI silencing or loss of one HRI allele improves expansion of Rps19-deficient erythroid precursors, as well as improves the anemic phenotype in Rps19-deficient animals. We found that Rps19-deficient erythroblasts have elevated levels of unbound intracellular heme, which is normalized by HRI heterozygosity. Additionally, targeting elevated heme levels by treating cells with the heme scavenger alpha-1-microglobulin (A1M), increased proliferation of Rps19-deficient erythroid precursors and decreased heme levels in a disease-specific manner. HRI heterozygosity, but not A1M treatment, also decreased the elevated p53 activity observed in Rps19-deficient cells, indicating that p53 activation is caused by ribosomal stress and aberrant mRNA translation and not heme overload in Rps19-deficiency. Together, these findings suggest that targeting elevated heme levels is a promising new treatment strategy for DBA.


Asunto(s)
alfa-Globulinas/uso terapéutico , Anemia de Diamond-Blackfan/terapia , Hemo/análisis , Anemia de Diamond-Blackfan/sangre , Anemia de Diamond-Blackfan/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Silenciador del Gen , Terapia Genética , Hemo/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/uso terapéutico , Proteínas Ribosómicas/genética
12.
EMBO Rep ; 23(2): e54384, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34914165

RESUMEN

During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.


Asunto(s)
Hemangioblastos , Diferenciación Celular , Linaje de la Célula/genética , Femenino , Hemangioblastos/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Embarazo , Piruvatos/metabolismo
13.
iScience ; 24(11): 103251, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34849461

RESUMEN

Single-cell RNAseq is a routinely used method to explore heterogeneity within cell populations. Data from these experiments are often visualized using dimension reduction methods such as UMAP and tSNE, where each cell is projected in two or three dimensional space. Three-dimensional projections can be more informative for larger and complex datasets because they are less prone to merging and flattening similar cell-types/clusters together. However, visualizing and cross-comparing 3D projections using current software on conventional flat-screen displays is far from optimal as they are still essentially 2D, and lack meaningful interaction between the user and the data. Here we present CellexalVR (www.cellexalvr.med.lu.se), a feature-rich, fully interactive virtual reality environment for the visualization and analysis of single-cell experiments that allows researchers to intuitively and collaboratively gain an understanding of their data.

14.
Sci Rep ; 11(1): 15898, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354145

RESUMEN

The YPEL family genes are highly conserved across a diverse range of eukaryotic organisms and thus potentially involved in essential cellular processes. Ypel4, one of five YPEL family gene orthologs in mouse and human, is highly and specifically expressed in late terminal erythroid differentiation (TED). In this study, we investigated the role of Ypel4 in murine erythropoiesis, providing for the first time an in-depth description of a Ypel4-null phenotype in vivo. We demonstrated that the Ypel4-null mice displayed a secondary polycythemia with macro- and reticulocytosis. While lack of Ypel4 did not affect steady-state TED in the bone marrow or spleen, the anemia-recovering capacity of Ypel4-null cells was diminished. Furthermore, Ypel4-null red blood cells (RBC) were cleared from the circulation at an increased rate, demonstrating an intrinsic defect of RBCs. Scanning electron micrographs revealed an ovalocytic morphology of Ypel4-null RBCs and functional testing confirmed reduced deformability. Even though Band 3 protein levels were shown to be reduced in Ypel4-null RBC membranes, we could not find support for a physical interaction between YPEL4 and the Band 3 protein. In conclusion, our findings provide crucial insights into the role of Ypel4 in preserving normal red cell membrane integrity.


Asunto(s)
Proteínas Portadoras/genética , Membrana Eritrocítica/fisiología , Eritropoyesis/genética , Anemia/metabolismo , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas Portadoras/metabolismo , Membrana Eritrocítica/genética , Eritrocitos/metabolismo , Eritrocitos Anormales/metabolismo , Eritropoyesis/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Policitemia/genética , Bazo
15.
J Immunol ; 206(11): 2700-2713, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34021049

RESUMEN

B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.


Asunto(s)
Linfocitos B/inmunología , Epigénesis Genética/inmunología , Factor de Transcripción PAX5/inmunología , Transactivadores/inmunología , Animales , Epigénesis Genética/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX5/deficiencia , Factor de Transcripción PAX5/genética , Transactivadores/deficiencia , Transactivadores/genética
16.
Blood ; 137(22): 3037-3049, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33619557

RESUMEN

Genes encoding B lineage-restricted transcription factors are frequently mutated in B-lymphoid leukemias, suggesting a close link between normal and malignant B-cell development. One of these transcription factors is early B-cell factor 1 (EBF1), a protein of critical importance for lineage specification and survival of B-lymphoid progenitors. Here, we report that impaired EBF1 function in mouse B-cell progenitors results in reduced expression of Myc. Ectopic expression of MYC partially rescued B-cell expansion in the absence of EBF1 both in vivo and in vitro. Using chromosome conformation analysis in combination with ATAC-sequencing, chromatin immunoprecipitation-sequencing, and reporter gene assays, six EBF1-responsive enhancer elements were identified within the Myc locus. CRISPR-Cas9-mediated targeting of EBF1-binding sites identified one element of key importance for Myc expression and pro-B cell expansion. These data provide evidence that Myc is a direct target of EBF1. Furthermore, chromatin immunoprecipitation-sequencing analysis revealed that several regulatory elements in the Myc locus are targets of PAX5. However, ectopic expression of PAX5 in EBF1-deficient cells inhibits the cell cycle and reduces Myc expression, suggesting that EBF1 and PAX5 act in an opposing manner to regulate Myc levels. This hypothesis is further substantiated by the finding that Pax5 inactivation reduces requirements for EBF1 in pro-B-cell expansion. The binding of EBF1 and PAX5 to regulatory elements in the human MYC gene in a B-cell acute lymphoblastic leukemia cell line indicates that the EBF1:PAX5:MYC regulatory loop is conserved and may control both normal and malignant B-cell development.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Factor de Transcripción PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Transactivadores/metabolismo , Animales , Proliferación Celular , Ratones , Ratones Noqueados , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Células Precursoras de Linfocitos B/patología , Proteínas Proto-Oncogénicas c-myc/genética , Elementos de Respuesta , Transactivadores/genética
17.
Biomark Res ; 9(1): 6, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468257

RESUMEN

BACKGROUND: Infection and graft-versus-host disease (GvHD) are the major causes for mortality and morbidity of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Plasma-derived extracellular vesicles (EVs) contain disease-related proteins, DNAs and RNAs, and have recently been suggested as potential biomarker candidates for transplantation complications. However, EV isolation from small plasma volumes in clinical biomarker studies using conventional methods is challenging. We therefore investigated if EVs isolated by novel automated acoustic trapping could be developed as potential biomarkers for allo-HSCT complications by performing a clinical proof-of-principle study. RESULTS: Plasma samples were collected from twenty consecutive patients with high-risk/relapsed hematologic malignancies undergoing allo-HSCT before transplantation and post-transplant up to 12 weeks. EVs were isolated from small plasma sample volumes (150 µl) by an automated, acoustofluidic-based particle trapping device, which utilizes a local λ/2 ultrasonic standing wave in a borosilicate glass capillary to capture plasma EVs among pre-seeded polystyrene microbeads through sound scatter interactions. We found that EVs could be reliably isolated from all plasma samples (n = 173) and that EV numbers increased more than 2-fold in the majority of patients after transplantation. Also, sufficient quantities of RNA for downstream microRNA (miRNA) analysis were obtained from all samples and EV miRNA profiles were found to differ from whole plasma profiles. As a proof of principle, expression of platelet-specific miR-142-3p in EVs was shown to correlate with platelet count kinetics after transplantation as expected. Importantly, we identified plasma EV miRNAs that were consistently positively correlated with infection and GvHD, respectively, as well as miRNAs that were consistently negatively correlated with these complications. CONCLUSIONS: This study demonstrates that acoustic enrichment of EVs in a clinical biomarker study setting is feasible and that downstream analysis of acoustically-enriched EVs presents a promising tool for biomarker development in allo-HSCT. Certainly, these findings warrant further exploration in larger studies, which will have significant implications not only for biomarker studies in transplantation but also for the broad field of EV-based biomarker discovery.

18.
Cell Stem Cell ; 28(2): 241-256.e6, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33086034

RESUMEN

Aging is associated with reduced fitness and increased myeloid bias of the hematopoietic stem cell (HSC) compartment, causing increased risk of immune compromise, anemia, and malignancy. We show that mitochondrial membrane potential (MMP) can be used to prospectively isolate chronologically old HSCs with transcriptional features and functional attributes characteristic of young HSCs, including a high rate of transcription and balanced lineage-affiliated programs. Strikingly, MMP is a stronger determinant of the quantitative and qualitative transcriptional state of HSCs than chronological age, and transcriptional consequences of manipulation of MMP in HSCs within their native niche suggest a causal relationship. Accordingly, we show that pharmacological enhancement of MMP in old HSCs in vivo increases engraftment potential upon transplantation and reverses myeloid-biased peripheral blood output at steady state. Our results demonstrate that MMP is a source of heterogeneity in old HSCs, and its pharmacological manipulation can alter transcriptional programs with beneficial consequences for function.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas
19.
Exp Hematol ; 88: 28-41, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32629063

RESUMEN

Erythropoiesis is intimately coupled to cell division, and deletion of the cell cycle regulator retinoblastoma protein (pRb) causes anemia in mice. Erythroid-specific deletion of pRb has been found to result in inefficient erythropoiesis because of deregulated coordination of cell cycle exit and mitochondrial biogenesis. However, the pathophysiology remains to be fully described, and further characterization of the link between cell cycle regulation and mitochondrial function is needed. To this end we further assessed conditional erythroid-specific deletion of pRb. This resulted in macrocytic anemia, despite elevated levels of erythropoietin (Epo), and an accumulation of erythroid progenitors in the bone marrow, a phenotype strongly resembling refractory anemia associated with myelodysplastic syndromes (MDS). Using high-fractionation fluorescence-activated cell sorting analysis for improved phenotypic characterization, we illustrate that erythroid differentiation was disrupted at the orthochromatic stage. Transcriptional profiling of sequential purified populations revealed failure to upregulate genes critical for mitochondrial function such as Pgc1ß, Alas2, and Abcb7 specifically at the block, together with disturbed heme production and iron transport. Notably, deregulated ABCB7 causes ring sideroblastic anemia in MDS patients, and the mitochondrial co-activator PGC1ß is heterozygously lost in del5q MDS. Importantly, the anemia could be rescued through enhanced PPAR signaling in vivo via either overexpression of Pgc1ß or bezafibrate administration. In conclusion, lack of pRb results in MDS-like anemia with disrupted differentiation and impaired mitochondrial function at the orthochromatic erythroblast stage. Our findings reveal for the first time a role for pRb in heme and iron regulation, and indicate that pRb-induced anemia can be rescued in vivo through therapeutic enhancement of PPAR signaling.


Asunto(s)
Anemia/metabolismo , Eritroblastos/metabolismo , Eritropoyesis , Mitocondrias/metabolismo , Síndromes Mielodisplásicos/metabolismo , Proteína de Retinoblastoma/deficiencia , Anemia/genética , Anemia/patología , Animales , Eritroblastos/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteína de Retinoblastoma/metabolismo
20.
Sci Immunol ; 4(39)2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562190

RESUMEN

The ability of B-1 cells to become positively selected into the mature B cell pool, despite being weakly self-reactive, has puzzled the field since its initial discovery. Here, we explore changes in B cell positive selection as a function of developmental time by exploiting a link between CD5 surface levels and the natural occurrence of self-reactive B cell receptors (BCRs) in BCR wild-type mice. We show that the heterochronic RNA binding protein Lin28b potentiates a neonatal mode of B cell selection characterized by enhanced overall positive selection in general and the developmental progression of CD5+ immature B cells in particular. Lin28b achieves this by amplifying the CD19/PI3K/c-Myc positive feedback loop, and ectopic Lin28b expression restores both positive selection and mature B cell numbers in CD19-/- adult mice. Thus, the temporally restricted expression of Lin28b relaxes the rules for B cell selection during ontogeny by modulating tonic signaling. We propose that this neonatal mode of B cell selection represents a cell-intrinsic cue to accelerate the de novo establishment of the adaptive immune system and incorporate a layer of natural antibody-mediated immunity throughout life.


Asunto(s)
Linfocitos B/inmunología , Proteínas de Unión al ARN/inmunología , Animales , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA