Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 387
2.
Nucleic Acids Res ; 52(3): 1064-1079, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38038264

mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.


Codon, Initiator , Conserved Sequence , Protein Biosynthesis , Animals , Rabbits , Codon, Initiator/genetics , Mammals/genetics , Peptide Chain Initiation, Translational , RNA, Messenger/metabolism , Yeasts , Eukaryota/genetics , Eukaryota/metabolism
3.
Cell Rep ; 43(1): 113615, 2024 01 23.
Article En | MEDLINE | ID: mdl-38159280

The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/ß) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.


Mouse Embryonic Stem Cells , Pluripotent Stem Cells , Animals , Mice , Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Phosphorylation , Pluripotent Stem Cells/metabolism , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-2/metabolism
4.
J Neurosci ; 43(44): 7247-7263, 2023 11 01.
Article En | MEDLINE | ID: mdl-37914402

In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.


Axons , Nerve Regeneration , Axons/metabolism , Neurons/physiology , RNA, Messenger/metabolism , Protein Biosynthesis
5.
Genes (Basel) ; 14(11)2023 Nov 14.
Article En | MEDLINE | ID: mdl-38003019

Translation initiation in eukaryotes is regulated at several steps, one of which involves the availability of the cap binding protein to participate in cap-dependent protein synthesis. Binding of eIF4E to translational repressors (eIF4E-binding proteins [4E-BPs]) suppresses translation and is used by cells to link extra- and intracellular cues to protein synthetic rates. The best studied of these interactions involves repression of translation by 4E-BP1 upon inhibition of the PI3K/mTOR signaling pathway. Herein, we characterize a novel 4E-BP, C8ORF88, whose expression is predominantly restricted to early spermatids. C8ORF88:eIF4E interaction is dependent on the canonical eIF4E binding motif (4E-BM) present in other 4E-BPs. Whereas 4E-BP1:eIF4E interaction is dependent on the phosphorylation of 4E-BP1, these sites are not conserved in C8ORF88 indicating a different mode of regulation.


Carrier Proteins , Eukaryotic Initiation Factor-4E , Carrier Proteins/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Phosphorylation
6.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38015848

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Astrocytes , Long-Term Potentiation , Long-Term Potentiation/physiology , Neuronal Plasticity/genetics , Hippocampus/physiology , Protein Biosynthesis , CA1 Region, Hippocampal , Memory, Long-Term/physiology
7.
Sci Adv ; 9(44): eadh9603, 2023 11 03.
Article En | MEDLINE | ID: mdl-37922363

Activation of the mechanistic target of rapamycin complex 1 (mTORC1) contributes to the development of chronic pain. However, the specific mechanisms by which mTORC1 causes hypersensitivity remain elusive. The eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is a key mTORC1 downstream effector that represses translation initiation. Here, we show that nociceptor-specific deletion of 4E-BP1, mimicking activation of mTORC1-dependent translation, is sufficient to cause mechanical hypersensitivity. Using translating ribosome affinity purification in nociceptors lacking 4E-BP1, we identified a pronounced translational up-regulation of tripartite motif-containing protein 32 (TRIM32), an E3 ubiquitin ligase that promotes interferon signaling. Down-regulation of TRIM32 in nociceptors or blocking type I interferon signaling reversed the mechanical hypersensitivity in mice lacking 4E-BP1. Furthermore, nociceptor-specific ablation of TRIM32 alleviated mechanical hypersensitivity caused by tissue inflammation. These results show that mTORC1 in nociceptors promotes hypersensitivity via 4E-BP1-dependent up-regulation of TRIM32/interferon signaling and identify TRIM32 as a therapeutic target in inflammatory pain.


Interferon Type I , Nociceptors , Mice , Animals , Nociceptors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Phosphoproteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Interferon Type I/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Neurol Genet ; 9(6): e200103, 2023 Dec.
Article En | MEDLINE | ID: mdl-37900581

Background and Objectives: Somatic and germline pathogenic variants in genes of the mammalian target of rapamycin (mTOR) signaling pathway are a common mechanism underlying a subset of focal malformations of cortical development (FMCDs) referred to as mTORopathies, which include focal cortical dysplasia (FCD) type II, subtypes of polymicrogyria, and hemimegalencephaly. Our objective is to screen resected FMCD specimens with mTORopathy features on histology for causal somatic variants in mTOR pathway genes, describe novel pathogenic variants, and examine the variant distribution in relation to neuroimaging, histopathologic classification, and clinical outcomes. Methods: We performed ultra-deep sequencing using a custom HaloPlexHS Target Enrichment kit in DNA from 21 resected fresh-frozen histologically confirmed FCD type II, tuberous sclerosis complex, or hemimegalencephaly specimens. We mapped the variant alternative allele frequency (AAF) across the resected brain using targeted ultra-deep sequencing in multiple formalin-fixed paraffin-embedded tissue blocks. We also functionally validated 2 candidate somatic MTOR variants and performed targeted RNA sequencing to validate a splicing defect associated with a novel DEPDC5 variant. Results: We identified causal mTOR pathway gene variants in 66.7% (14/21) of patients, of which 13 were somatic with AAF ranging between 0.6% and 12.0%. Moreover, the AAF did not predict balloon cell presence. Favorable seizure outcomes were associated with genetically clear resection borders. Individuals in whom a causal somatic variant was undetected had excellent postsurgical outcomes. In addition, we demonstrate pathogenicity of the novel c.4373_4375dupATG and candidate c.7499T>A MTOR variants in vitro. We also identified a novel germline aberrant splice site variant in DEPDC5 (c.2802-1G>C). Discussion: The AAF of somatic pathogenic variants correlated with the topographic distribution, histopathology, and postsurgical outcomes. Moreover, cortical regions with absent histologic FCD features had negligible or undetectable pathogenic variant loads. By contrast, specimens with frank histologic abnormalities had detectable pathogenic variant loads, which raises important questions as to whether there is a tolerable variant threshold and whether surgical margins should be clean, as performed in tumor resections. In addition, we describe 2 novel pathogenic variants, expanding the mTORopathy genetic spectrum. Although most pathogenic somatic variants are located at mutation hotspots, screening the full-coding gene sequence remains necessary in a subset of patients.

9.
Eur Respir Rev ; 32(169)2023 Sep 30.
Article En | MEDLINE | ID: mdl-37758276

Lymphangioleiomyomatosis (LAM) is a cystic lung disease of women resulting from mutations in tuberous sclerosis complex (TSC) genes that suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway. mTORC1 activation enhances a plethora of anabolic cellular functions, mainly via the activation of mRNA translation through stimulation of ribosomal protein S6 kinase (S6K1)/ribosomal protein S6 (S6) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/eukaryotic translation initiation factor 4E (eIF4E). Rapamycin (sirolimus), an allosteric inhibitor of mTORC1, stabilises lung function in many but not all LAM patients and, upon cessation of the drug, disease progression resumes. At clinically tolerable concentrations, rapamycin potently inhibits the ribosomal S6K1/S6 translation ribosome biogenesis and elongation axis, but not the translation 4E-BP1/eIF4E initiation axis. In this mini-review, we propose that inhibition of mTORC1-driven translation initiation is an obvious but underappreciated therapeutic strategy in LAM, TSC and other mTORC1-driven diseases.


Lymphangioleiomyomatosis , Female , Humans , Lymphangioleiomyomatosis/diagnosis , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology
10.
J Cell Sci ; 136(19)2023 10 01.
Article En | MEDLINE | ID: mdl-37732428

Viruses use microRNAs (miRNAs) to impair the host antiviral response and facilitate viral infection by expressing their own miRNAs or co-opting cellular miRNAs. miRNAs inhibit translation initiation of their target mRNAs by recruiting the GIGYF2-4EHP (or EIF4E2) translation repressor complex to the mRNA 5'-cap structure. We recently reported that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-encoded non-structural protein 2 (NSP2) interacts with GIGYF2. This interaction is critical for blocking translation of the Ifnb1 mRNA that encodes the cytokine interferon ß, and thereby impairs the host antiviral response. However, it is not known whether NSP2 also affects miRNA-mediated silencing. Here, we demonstrate the pervasive augmentation of miRNA-mediated translational repression of cellular mRNAs by NSP2. We show that NSP2 interacts with argonaute 2 (AGO2), the core component of the miRNA-induced silencing complex (miRISC), via GIGYF2 and enhances the translational repression mediated by natural miRNA-binding sites in the 3' untranslated region of cellular mRNAs. Our data reveal an additional layer of the complex mechanism by which SARS-CoV-2 and likely other coronaviruses manipulate the host gene expression program by co-opting the host miRNA-mediated silencing machinery.


COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Antiviral Agents
11.
Elife ; 122023 07 17.
Article En | MEDLINE | ID: mdl-37458356

Evidence implicating p38γ and p38δ (p38γ/p38δ) in inflammation are mainly based on experiments using Mapk12/Mapk13-deficient (p38γ/δKO) mice, which show low levels of TPL2, the kinase upstream of MKK1-ERK1/2 in myeloid cells. This could obscure p38γ/p38δ roles, since TPL2 is essential for regulating inflammation. Here, we generated a Mapk12D171A/D171A/Mapk13-/- (p38γ/δKIKO) mouse, expressing kinase-inactive p38γ and lacking p38δ. This mouse exhibited normal TPL2 levels, making it an excellent tool to elucidate specific p38γ/p38δ functions. p38γ/δKIKO mice showed a reduced inflammatory response and less susceptibility to lipopolysaccharide (LPS)-induced septic shock and Candida albicans infection than wild-type (WT) mice. Gene expression analyses in LPS-activated wild-type and p38γ/δKIKO macrophages revealed that p38γ/p38δ-regulated numerous genes implicated in innate immune response. Additionally, phospho-proteomic analyses and in vitro kinase assays showed that the transcription factor myocyte enhancer factor-2D (MEF2D) was phosphorylated at Ser444 via p38γ/p38δ. Mutation of MEF2D Ser444 to the non-phosphorylatable residue Ala increased its transcriptional activity and the expression of Nos2 and Il1b mRNA. These results suggest that p38γ/p38δ govern innate immune responses by regulating MEF2D phosphorylation and transcriptional activity.


Lipopolysaccharides , Mitogen-Activated Protein Kinase 13 , Animals , Mice , Mitogen-Activated Protein Kinase 13/metabolism , Proteomics , Immunity, Innate , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 12/metabolism , Inflammation
12.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Article En | MEDLINE | ID: mdl-37473758

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Animals , Mice , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Mental Retardation Protein/genetics , Neurons/metabolism , Phenotype , Mice, Knockout , Disease Models, Animal
13.
Proc Natl Acad Sci U S A ; 120(25): e2300008120, 2023 06 20.
Article En | MEDLINE | ID: mdl-37307456

mRNA translation initiation plays a critical role in learning and memory. The eIF4F complex, composed of the cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffolding protein eIF4G, is a pivotal factor in the mRNA translation initiation process. eIF4G1, the major paralogue of the three eIF4G family members, is indispensable for development, but its function in learning and memory is unknown. To study the role of eIF4G1 in cognition, we used an eIF4G1 haploinsufficient (eIF4G1-1D) mouse model. The axonal arborization of eIF4G1-1D primary hippocampal neurons was significantly disrupted, and the mice displayed impairment in hippocampus-dependent learning and memory. Translatome analysis showed that the translation of mRNAs encoding proteins of the mitochondrial oxidative phosphorylation (OXPHOS) system was decreased in the eIF4G1-1D brain, and OXPHOS was decreased in eIF4G1-silenced cells. Thus, eIF4G1-mediated mRNA translation is crucial for optimal cognitive function, which is dependent on OXPHOS and neuronal morphogenesis.


Eukaryotic Initiation Factor-4G , Oxidative Phosphorylation , Animals , Mice , RNA, Messenger , Peptide Chain Initiation, Translational , Morphogenesis , DNA Helicases
15.
Front Mol Biosci ; 10: 1148933, 2023.
Article En | MEDLINE | ID: mdl-37091863

14-3-3 proteins play critical roles in controlling multiple aspects of the cellular response to stress and DNA damage including regulation of metabolism, cell cycle progression, cell migration, and apoptotic cell death by binding to protein substrates of basophilic protein kinases following their phosphorylation on specific serine/threonine residues. Although over 200 mammalian proteins that bind to 14-3-3 have been identified, largely through proteomic studies, in many cases the relevant protein kinase responsible for conferring 14-3-3-binding to these proteins is not known. To facilitate the identification of kinase-specific 14-3-3 clients, we developed a biochemical approach using high-density protein filter arrays and identified the translational regulatory molecule PABPC1 as a substrate for Chk1 and MAPKAP Kinase-2 (MK2) in vitro, and for MK2 in vivo, whose phosphorylation results in 14-3-3-binding. We identify Ser-470 on PABPC1 within the linker region connecting the RRM domains to the PABC domain as the critical 14-3-3-binding site, and demonstrate that loss of PABPC1 binding to 14-3-3 results in increased cell proliferation and decreased cell death in response to UV-induced DNA damage.

17.
Biosensors (Basel) ; 13(2)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36832056

Microglia cells, as the resident immune cells of the central nervous system (CNS), are highly motile and migratory in development and pathophysiological conditions. During their migration, microglia cells interact with their surroundings based on the various physical and chemical properties in the brain. Herein, a microfluidic wound-healing chip is developed to investigate microglial BV2 cell migration on the substrates coated with extracellular matrixes (ECMs) and substrates usually used for bio-applications on cell migration. In order to generate the cell-free space (wound), gravity was utilized as a driving force to flow the trypsin with the device. It was shown that, despite the scratch assay, the cell-free area was created without removing the extracellular matrix coating (fibronectin) using the microfluidic assay. It was found that the substrates coated with Poly-L-Lysine (PLL) and gelatin stimulated microglial BV2 migration, while collagen and fibronectin coatings had an inhibitory effect compared to the control conditions (uncoated glass substrate). In addition, the results showed that the polystyrene substrate induced higher cell migration than the PDMS and glass substrates. The microfluidic migration assay provides an in vitro microenvironment closer to in vivo conditions for further understanding the microglia migration mechanism in the brain, where the environment properties change under homeostatic and pathological conditions.


Fibronectins , Microfluidics , Microfluidics/methods , Fibronectins/pharmacology , Microglia/physiology , Cell Movement/physiology , Extracellular Matrix
18.
Mol Brain ; 16(1): 9, 2023 01 18.
Article En | MEDLINE | ID: mdl-36650535

The consolidation of learned information into long-lasting memories requires the strengthening of synaptic connections through de novo protein synthesis. Translation initiation factors play a cardinal role in gating the production of new proteins thereby regulating memory formation. Both positive and negative regulators of translation play a critical role in learning and memory consolidation. The eukaryotic initiation factor 4E (eIF4E) homologous protein (4EHP, encoded by the gene Eif4e2) is a pivotal negative regulator of translation but its role in learning and memory is unknown. To address this gap in knowledge, we generated excitatory (glutamatergic: CaMKIIα-positive) and inhibitory (GABAergic: GAD65-positive) conditional knockout mice for 4EHP, which were analyzed in various behavioral memory tasks. Knockout of 4EHP in Camk2a-expressing neurons (4EHP-cKOexc) did not impact long-term memory in either contextual fear conditioning or Morris water maze tasks. Similarly, long-term contextual fear memory was not altered in Gad2-directed 4EHP knockout mice (4EHP-cKOinh). However, when subjected to a short-term T-maze working memory task, both mouse models exhibited impaired cognition. We therefore tested the hypothesis that de novo protein synthesis plays a direct role in working memory. We discovered that phosphorylation of ribosomal protein S6, a measure of mTORC1 activity, is dramatically reduced in the CA1 hippocampus of 4EHP-cKOexc mice. Consistently, genetic reduction of mTORC1 activity in either excitatory or inhibitory neurons was sufficient to impair working memory. Taken together, these findings indicate that translational control by 4EHP and mTORC1 in both excitatory and inhibitory neurons are necessary for working memory.


Eukaryotic Initiation Factor-4E , Learning , Memory, Short-Term , Animals , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Knockout , RNA Cap-Binding Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism
19.
Biochem Soc Trans ; 51(1): 113-124, 2023 02 27.
Article En | MEDLINE | ID: mdl-36661272

Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.


Eukaryotic Initiation Factor-4E , Neoplasms , Humans , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Phosphorylation
20.
Commun Biol ; 5(1): 1140, 2022 10 27.
Article En | MEDLINE | ID: mdl-36302891

Defective interfering (DI) particles arise during virus propagation, are conditional on parental virus for replication and packaging, and interfere with viral expansion. There is much interest in developing DIs as anti-viral agents. Here we characterize DI particles that arose following serial passaging of SARS-CoV-2 at high multiplicity of infection. The prominent DIs identified have lost ~84% of the SARS-CoV-2 genome and are capable of attenuating parental viral titers. Synthetic variants of the DI genomes also interfere with infection and can be used as conditional, gene delivery vehicles. In addition, the DI genomes encode an Nsp1-10 fusion protein capable of attenuating viral replication. These results identify naturally selected defective viral genomes that emerged and stably propagated in the presence of parental virus.


COVID-19 , Defective Viruses , Humans , Defective Viruses/genetics , SARS-CoV-2/genetics , Defective Interfering Viruses , RNA, Viral/genetics
...