Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
CNS Neurosci Ther ; 30(2): e14597, 2024 02.
Article En | MEDLINE | ID: mdl-38332558

BACKGROUND: The neuroprotective effect of magnesium has been widely discussed, and its effectiveness has been confirmed by animal and clinical trials. However, there are still difficulties in clinical translation in diseases such as cerebral ischemia and subarachnoid hemorrhage. Therefore, it is necessary to analyze the literatures about neuroprotection of magnesium to reveal a more comprehensive knowledge framework, research hotspots and trends in the future. METHODS: Original articles and reviews related to neuroprotective effects of magnesium from 1999 to 2022 were retrieved from the Web of Science Core Collection (WoSCC). The bibliometrics CiteSpace 6.2.R4 software was used to conduct co-occurrence/co-citation network analysis and plot knowledge visualization maps. RESULTS: A total of 762 articles from 216 institutions in 64 countries were included in this study. The United States had the largest number of publications, followed by China and Canada. The University of California, UDICE-French Research Universities, and the University of Adelaide were the top three institutions in publication volume. Crowther Caroline A was the most published and cited author. Among the top 10 cited articles, there were seven articles on neuroprotection in preterm infants and three on acute stroke. Keyword cluster analysis obtained 11 clusters, showing that current research hotspots focused on magnesium therapy in neurovascular diseases such as cerebral ischemia, spinal cord injury, subarachnoid hemorrhage, and emerging treatment strategies. CONCLUSION: The neuroprotective effects of magnesium in preterm infants have been extensively studied and adequately confirmed. The therapeutic effects of magnesium on cerebral ischemia and subarachnoid hemorrhage have been demonstrated in animal models. However, the results of clinical studies were not satisfactory, and exploring new therapeutic strategies may be the solution. Recently, the combination of magnesium and hypothermia had great potential in neuroprotective therapy and may become a development trend and hotspot in the future.


Neuroprotective Agents , Subarachnoid Hemorrhage , Infant, Newborn , Animals , Infant , Humans , Neuroprotective Agents/therapeutic use , Magnesium/therapeutic use , Infant, Premature , Cerebral Infarction , Bibliometrics
2.
Front Immunol ; 13: 833490, 2022.
Article En | MEDLINE | ID: mdl-35444662

Cerebral venous thrombosis (CVT) is a rare form of cerebrovascular disease that impairs people's wellbeing and quality of life. Inflammation is considered to play an important role in CVT initiation and progression. Several studies have reported the important role of leukocytes, proinflammatory cytokines, and adherence molecules in the CVT-related inflammatory process. Moreover, inflammatory factors exacerbate CVT-induced brain tissue injury leading to poor prognosis. Based on clinical observations, emerging evidence shows that peripheral blood inflammatory biomarkers-especially neutrophil-to-lymphocyte ratio (NLR) and lymphocyte count-are correlated with CVT [mean difference (MD) (95%CI), 0.74 (0.11, 1.38), p = 0.02 and -0.29 (-0.51, -0.06), p = 0.01, respectively]. Moreover, increased NLR and systemic immune-inflammation index (SII) portend poor patient outcomes. Evidence accumulated since the outbreak of coronavirus disease-19 (COVID-19) indicates that COVID-19 infection and COVID-19 vaccine can induce CVT through inflammatory reactions. Given the poor understanding of the association between inflammation and CVT, many conundrums remain unsolved. Further investigations are needed to elucidate the exact relationship between inflammation and CVT in the future.


COVID-19 , Intracranial Thrombosis , Venous Thrombosis , COVID-19 Vaccines , Humans , Inflammation , Intracranial Thrombosis/epidemiology , Intracranial Thrombosis/etiology , Quality of Life , Venous Thrombosis/etiology
...