Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1142773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124610

RESUMEN

Importance: Glaucoma is the second leading cause of blindness in the world. The causal direction and magnitude of the association between blood cell traits and glaucoma is uncertain because of the susceptibility of observational studies to confounding and reverse causation. Objective: To explore whether there is a causal relationship of blood cell traits including white blood cell (WBC) count (WBCC) and its subtypes [basophil cell count (BASO), monocyte cell count (MONO), lymphocyte cell count (LYMPH), eosinophil cell count (EOS), neutrophil cell count (NEUT)], red blood cell (RBC) count (RBCC), red blood distribution width (RDW), platelet count (PLT), and plateletcrit (PCT) on glaucoma risk. Methods: A two-sample Mendelian randomization (MR) analysis was conducted. Genome-wide significant single nucleotide polymorphisms (SNPs) from published genome-wide association studies (GWAS) on human blood cell traits were utilized as exposure instruments and the dataset for outcome was from the GWAS summary data of glaucoma. In the univariable MR analysis, we examined the association between genetic evidence of blood cell traits and glaucoma. To further investigate the potential causal mechanisms underlying the observed association, we performed multivariable MR analysis with three models, taking into account the mediator effect of inflammation and oxidative stress. According to Bonferroni-corrected for the 10 exposures in 3 methods, the MR study yielded a statistically significant p-value of 0.0017. Results: Genetically BASO, PCT, LYMPH, and PLT were potentially positively associated with glaucoma in the European ancestry [BASO: Odds ratio (OR) = 1.00122, 95% confidence interval (CI), 1.00003-1.00242, p = 0.045; PCT: OR = 1.00078, 95% CI, 1.00012-1.00143, p = 0.019; LYMPH: OR = 1.00076, 95% CI, 1.00002-1.00151, p = 0.045; PLT: OR = 1.00065, 95% CI, 1.00006-1.00123, p = 0.030], There was insufficient evidence to support a causal association of MONO, NEUT, EOS, WBCC, RBCC and RDW (MONO: OR = 1.00050, p = 0.098; NEUT: OR = 1.00028, p = 0.524; EOS: OR = 1.00020, p = 0.562; WBCC: OR = 1.00008, p = 0.830; RBCC: OR = 0.99996, p = 0.920; RDW: OR = 0.99987, p = 0.734) with glaucoma. The multivariable MR with model 1, 2, and 3 demonstrated that BASO, PCT, LYMPH, and PLT were still potentially genetically associated with the risk of glaucoma. Conclusion: Our study reveals a genetic predisposition to higher LYMPH, BASO, PLT, and PCT are associated with a higher risk of glaucoma, whereas WBCC, MONO, EOS, NEUT, RBCC, and RDW are not associated with the occurrence of glaucoma. This finding also supports previous observational studies associating immune components with glaucoma, thus provide guidance on the predication and prevention for glaucoma.

2.
Cell Mol Neurobiol ; 43(3): 1037-1048, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35792991

RESUMEN

Retinitis pigmentosa (RP) is a group of genetic disorders resulting in inherited blindness due to the degeneration of rod and cone photoreceptors. The various mechanisms underlying rod degeneration primarily rely on genetic mutations, leading to night blindness initially. Cones gradually degenerate after rods are almost eliminated, resulting in varying degrees of visual disability and blindness. The mechanism of cone degeneration remains unclear. An understanding of the mechanisms underlying cone degeneration in RP, a highly heterogeneous disease, is essential to develop novel treatments of RP. Herein, we review recent advancements in the five hypotheses of cone degeneration, including oxidative stress, trophic factors, metabolic stress, light damage, and inflammation activation. We also discuss the connection among these theories to provide a better understanding of secondary cone degeneration in RP. Five current mechanisms of cone degenerations in RP Interactions among different pathways are involved in RP.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Retinitis Pigmentosa , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/terapia , Ceguera/metabolismo , Estrés Oxidativo
3.
Oxid Med Cell Longev ; 2022: 6881322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124087

RESUMEN

Advancements in technology have resulted in increasing concerns over the safety of eye exposure to light illumination, since prolonged exposure to intensive visible light, especially to short-wavelength light in the visible spectrum, can cause photochemical damage to the retina through a photooxidation-triggered cascade reaction. Poly(ADP-ribose) polymerase-1 (PARP-1) is the ribozyme responsible for repairing DNA damage. When damage to DNA occurs, including nicks and breaks, PARP-1 is rapidly activated, synthesizing a large amount of PAR and recruiting other nuclear factors to repair the damaged DNA. However, retinal photochemical damage may lead to the overactivation of PARP-1, triggering PARP-dependent cell death, including parthanatos, necroptosis, and autophagy. In this review, we retrieved targeted articles with the keywords such as "PARP-1," "photoreceptor," "retinal light damage," and "photooxidation" from databases and summarized the molecular mechanisms involved in retinal photooxidation, PARP activation, and DNA repair to clarify the key regulatory role of PARP-1 in retinal light injury and to determine whether PARP-1 may be a potential marker in response to retinal photooxidation. The highly sensitive detection of PARP-1 activity may facilitate early evaluation of the effects of light on the retina, which will provide an evidentiary basis for the future assessment of the safety of light illumination from optoelectronic products and medical devices.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , ARN Catalítico , Biomarcadores , ADN/metabolismo , Daño del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...