Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Sci Data ; 11(1): 1016, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294192

RESUMEN

Heteroptera (the true bugs), one of the most diverse lineages of insects, diversified in feeding strategies and living habitats, and thus become an ideal lineage for studies on adaptive evolution. Chinese water scorpion Ranatra chinensis (Heteroptera: Nepidae) is a predaceous bug living in lentic water systems, representing an ideal model for studying habitat transition and adaptation to water environment. However, genetic studies on this water bug remain limited. Here, we obtained a chromosome-level genome of R. chinensis using PacBio HiFi long reads and Hi-C sequencing reads. The total assembly size of genome is 867.89 Mb, with a scaffold N50 length of 26.48 Mb and the GC content of 39.50%. All contigs were assembled into 23 pseudo-chromosomes (N = 19 A + X1X2X3X4), and we predicted 18,424 protein-coding genes in this genome. This study will provide valuable genomic resources for future studies on the biology, water adaptation, and genome evolution of water bugs.


Asunto(s)
Genoma de los Insectos , Heterópteros , Animales , Heterópteros/genética , Cromosomas de Insectos
2.
J Ethnopharmacol ; 337(Pt 1): 118779, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244177

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Danshen-Shanzha Decoction (DSD) is a renowned herbal combination consisting of the root of Salvia miltiorrhiza Bunge (known as Danshen in Chinese) and the fruits of Crataegus pinnatifida Bunge (known as Shanzha in Chinese), which has exhibited remarkable clinical efficacy in the treatment of coronary heart disease (CHD) in traditional Chinese medicine, with its earliest recorded application dating to around 202 BCE during the Han Dynasty. Despite significant advancements in the fundamental research and clinical applications of DSD over the past few decades, the precise bioactive components as well as the underlying mechanisms responsible for its protective effect on CHD remain unelucidated. AIM OF THE STUDY: The present study was designed to elucidate the bioactive components and potential mechanism of DSD in the treatment of CHD using in silico technologies integrated with pharmacoinformatic methods and experimental validation. MATERIALS AND METHODS: The chemical components of DSD were analyzed and identified using UPLC-Q-TOF-MS. Pharmacoinformatic-based methods were employed to comprehensively investigate the principal active components and targets of DSD for treating CHD. GO and KEGG pathway analyses were utilized to elucidate the underlying mechanism responsible for DSD's efficacy against CHD. Molecular docking and molecular dynamics simulation were performed to assess the binding affinity between active components and putative targets. Furthermore, surface plasmon resonance (SPR) was carried out to verify the affinity and kinetic characteristics of major components to STAT3 protein. Subsequently, a series of in vitro experiments, including cell viability test, flow cytometric analysis, ELISA and western blotting, were conducted to validate the predicted results in an oxygen-glucose deprivation (OGD)-stimulated H9c2 model. RESULTS: A total of 96 compounds were characterized by UPLC-Q-TOF-MS, and 281 overlapping targets were identified through pharmacoinformatic-based methods. Among these, ten critical compounds were determined as the core active components of DSD. The core targets associated with the development of CHD included STAT3, SRC, TP53, JUN, and AKT1. Notably, Dihydrotanshinone I and (+)-Epicatechin exhibited strong binding affinity towards STAT3. The potential mechanisms by which DSD modulates the pathological progression of CHD were predicted to involve inflammation, oxidative stress, and apoptosis. Importantly, the cytoprotective effect of DSD against apoptosis was confirmed in OGD-stimulated H9c2 cells, as evidenced by the upregulation of Bcl-2 expression and downregulation of both Bax and cleaved caspase-3 expressions upon DSD treatment. Furthermore, DSD significantly enhanced the phosphorylated protein expressions of JAK2 and STAT3 compared to the OGD group, suggesting its potential role in modulating related signaling pathways. CONCLUSIONS: The current study successfully fills the gap in the understanding of the chemical profiles of DSD, predicting its active components, potential targets, and molecular mechanisms in the treatment of CHD. These findings not only provide a valuable strategy but also robust data support for future investigations into DSD, thereby facilitating the identification of novel therapeutic targets for traditional Chinese medicines in the battle against CHD.

3.
RNA Biol ; 21(1): 29-45, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39256954

RESUMEN

Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.


Asunto(s)
Adenosina , Evolución Molecular , Inosina , Edición de ARN , Animales , Inosina/genética , Inosina/metabolismo , Abejas/genética , Adenosina/metabolismo , Adenosina/genética , Secuencia Conservada , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
4.
iScience ; 27(8): 110411, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39108731

RESUMEN

Genetic basis underlying the biodiversity and phenotypic plasticity are fascinating questions in evolutionary biology. Such molecular diversity can be achieved at multi-omics levels. Here, we sequenced the first chromosome-level genome of assassin bug Rhynocoris fuscipes, a polyphagous generalist predator for biological control of agroecosystems. Compared to non-predatory true bugs Apolygus lucorum and Riptortus pedestris, the R. fuscipes-specific genes were enriched in diet-related genes (e.g., serine proteinase, cytochrome P450) which had higher expression level and more exons than non-diet genes. Extensive A-to-I RNA editing was identified in all three species and showed enrichment in genes associated with diet in R. fuscipes, diversifying the transcriptome. An extended analysis between five predaceous and 27 phytophagous hemipteran species revealed an expansion of diet-related genes in R. fuscipes. Our findings bridge the gap between genotype and phenotype, and also advance our understanding on genetic and epigenetic bases governing the diet shifts in ture bugs.

5.
iScience ; 27(7): 110021, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055931

RESUMEN

Existing automatic analysis of fundus fluorescein angiography (FFA) images faces limitations, including a predetermined set of possible image classifications and being confined to text-based question-answering (QA) approaches. This study aims to address these limitations by developing an end-to-end unified model that utilizes synthetic data to train a visual question-answering model for FFA images. To achieve this, we employed ChatGPT to generate 4,110,581 QA pairs for a large FFA dataset, which encompassed a total of 654,343 FFA images from 9,392 participants. We then fine-tuned the Bootstrapping Language-Image Pre-training (BLIP) framework to enable simultaneous handling of vision and language. The performance of the fine-tuned model (ChatFFA) was thoroughly evaluated through automated and manual assessments, as well as case studies based on an external validation set, demonstrating satisfactory results. In conclusion, our ChatFFA system paves the way for improved efficiency and feasibility in medical imaging analysis by leveraging generative large language models.

6.
IEEE Trans Med Imaging ; PP2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024079

RESUMEN

Histopathological examinations heavily rely on hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining. IHC staining can offer more accurate diagnostic details but it brings significant financial and time costs. Furthermore, either re-staining HE-stained slides or using adjacent slides for IHC may compromise the accuracy of pathological diagnosis due to information loss. To address these challenges, we develop PST-Diff, a method for generating virtual IHC images from HE images based on diffusion models, which allows pathologists to simultaneously view multiple staining results from the same tissue slide. To maintain the pathological consistency of the stain transfer, we propose the asymmetric attention mechanism (AAM) and latent transfer (LT) module in PST-Diff. Specifically, the AAM can retain more local pathological information of the source domain images through the design of asymmetric attention mechanisms, while ensuring the model's flexibility in generating virtual stained images that highly confirm to the target domain. Subsequently, the LT module transfers the implicit representations across different domains, effectively alleviating the bias introduced by direct connection and further enhancing the pathological consistency of PST-Diff. Furthermore, to maintain the structural consistency of the stain transfer, the conditional frequency guidance (CFG) module is proposed to precisely control image generation and preserve structural details according to the frequency recovery process. To conclude, the pathological and structural consistency constraints provide PST-Diff with effectiveness and superior generalization in generating stable and functionally pathological IHC images with the best evaluation score. In general, PST-Diff offers prospective application in clinical virtual staining and pathological image analysis.

7.
J Mol Evol ; 92(4): 488-504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39012510

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing recodes the genetic information. Apart from diversifying the proteome, another tempting advantage of RNA recoding is to correct deleterious DNA mutation and restore ancestral allele. Solid evidences for beneficial restorative editing are very rare in animals. By searching for "convergent recoding" under a phylogenetic context, we proposed this term for judging the potential restorative functions of particular editing site. For the well-known mammalian Gln>Arg (Q>R) recoding site, its ancestral state in vertebrate genomes was the pre-editing Gln, and all 470 available mammalian genomes strictly avoid other three equivalent ways to achieve Arg in protein. The absence of convergent recoding from His>Arg, or synonymous mutations on Gln codons, could be attributed to the strong maintenance on editing motif and structure, but the absence of direct A-to-G mutation is extremely unexpected. With similar ideas, we found cases of convergent recoding in Drosophila genus, reducing the possibility of their restorative function. In summary, we defined an interesting scenario of convergent recoding, the occurrence of which could be used as preliminary judgements for whether a recoding site has a sole restorative role. Our work provides novel insights to the natural selection and evolution of RNA editing.


Asunto(s)
Adenosina , Codón , Evolución Molecular , Inosina , Filogenia , Edición de ARN , Edición de ARN/genética , Animales , Inosina/genética , Adenosina/genética , Adenosina/metabolismo , Codón/genética , Selección Genética , Humanos , Drosophila/genética
9.
Fly (Austin) ; 18(1): 2367359, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38889318

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing recodes the genome and confers flexibility for the organisms to adapt to the environment. It is believed that RNA recoding sites are well suited for facilitating adaptive evolution by increasing the proteomic diversity in a temporal-spatial manner. The function and essentiality of a few conserved recoding sites are recognized. However, the experimentally discovered functional sites only make up a small corner of the total sites, and there is still the need to expand the repertoire of such functional sites with bioinformatic approaches. In this study, we define a new category of RNA editing sites termed 'conserved editing with non-conserved recoding' and systematically identify such sites in Drosophila editomes, figuring out their selection pressure and signals of adaptation at inter-species and intra-species levels. Surprisingly, conserved editing sites with non-conserved recoding are not suppressed and are even slightly overrepresented in Drosophila. DNA mutations leading to such cases are also favoured during evolution, suggesting that the function of those recoding events in different species might be diverged, specialized, and maintained. Finally, structural prediction suggests that such recoding in potassium channel Shab might increase ion permeability and compensate the effect of low temperature. In conclusion, conserved editing with non-conserved recoding might be functional as well. Our study provides novel aspects in considering the adaptive evolution of RNA editing sites and meanwhile expands the candidates of functional recoding sites for future validation.


Asunto(s)
Adenosina , Drosophila , Inosina , Edición de ARN , Animales , Inosina/metabolismo , Inosina/genética , Drosophila/genética , Drosophila/metabolismo , Adenosina/metabolismo , Adenosina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
10.
Front Pharmacol ; 15: 1380977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38910885

RESUMEN

Danshen-Shanzha Formula (DSF) is a well-known herbal combination comprising Radix Salvia Miltiorrhiza (known as Danshen in Chinese) and Fructus Crataegi (known as Shanzha in Chinese), It has been documented to exhibit considerable benefits for promoting blood circulation and removing blood stasis, and was used extensively in the treatment of atherosclerotic cardiac and cerebral vascular diseases over decades. Despite several breakthroughs achieved in the basic research and clinical applications of DSF over the past decades, there is a lack of comprehensive reviews summarizing its features and research, which hinders further exploration and exploitation of this promising formula. This review aims to provide a comprehensive interpretation of DSF in terms of its ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties and pharmacological effects. The related information on Danshen, Shanzha, and DSF was obtained from internationally recognized online scientific databases, including Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure, Baidu Scholar, ScienceDirect, ACS Publications, Online Library, Wan Fang Database as well as Flora of China. Data were also gathered from documentations, printed works and classics, such as the Chinese Pharmacopoeia, Chinese herbal classics, etc. Three essential avenues for future studies were put forward as follows: a) Develop and unify the standard preparation method of DSF as to achieve optimized pharmacological properties. b) Elucidate the functional mechanisms as well as the rationality and rule for the compatibility art of DSF by focusing on the clinic syndromes together with the subsequent development of preclinic study system in vitro and in vivo with consistent pathological features, pharmacokinetical behaviour and biomarkers. c) Perform more extensive clinical studies towards the advancement of mechanism-based on evidence-based medicine on the safety application of DSF. This review will provide substantial data support and broader perspective for further research on the renowned formula.

11.
Zookeys ; 1204: 191-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882564

RESUMEN

Melanasterasinica He & Burckhardt, sp. nov., a new psylloid species developing on Grewia sp., is described from Hainan, China. It is the first Melanastera species reported from Asia and China, and the second species from the Old World. While New World species of Melanastera are mostly associated with the plant families Melastomataceae and Annonaceae, the two Old World species develop on the malvaceous Grewia, a host otherwise used in psylloids by two Haplaphalara species. The new species is described, diagnosed and illustrated, and its host plant and biogeographic ranges are discussed.

12.
Cell Signal ; 120: 111228, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750680

RESUMEN

Cancer cells tend to live in hypoxic environment characterized by enhanced glycolysis and accumulation of lactate. Intracellular lactate is shown to drive a novel type of post-translational modification (PTM), lysine lactylation (Kla). Kla has been confirmed to affect the malignant progression of tumors such as hepatocellular carcinoma (HCC) and colon cancer, whereas the global lactylomic profiling of oral squamous cell carcinoma (OSCC) is unclear. Here, the integrative lactylome and proteome analyses by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1011 Kla sites within 532 proteins and 1197 Kla sites within 608 proteins in SCC25 cells under normoxic and hypoxic environments, respectively. Among these lactylated proteins, histones accounted for only a small fraction, suggesting the presence of Kla modification of OSCC in a large number of non-histone proteins. Notably, Kla preferred to enrich in spliceosome, ribosome and glycolysis/gluconeogenesis pathway in both normoxic and hypoxic cultures. Compared with normoxia, 589 differential proteins with 898 differentially lactylated sites were detected under hypoxia, which were mainly associated with the glycolysis/gluconeogenesis pathway by KEGG analysis. Importantly, we verified the presence of lactylation modification in the spliceosomal proteins hnRNPA1, SF3A1, hnRNPU and SLU7, as well as in glycolytic enzyme PFKP. In addition, the differential alternative splicing analysis described the divergence of pre-mRNA splicing patterns in the presence or absence of sodium lactate and at different oxygen concentrations. Finally, a negative correlation between tissue Kla levels and the prognosis of OSCC patients was revealed by immunohistochemistry. Our study is the first report to elucidate the lactylome and its biological function in OSCC, which deepens our understanding of the mechanisms underlying OSCC progression and provides a novel strategy for targeted therapy for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Lisina , Neoplasias de la Boca , Procesamiento Proteico-Postraduccional , Humanos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Lisina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Hipoxia de la Célula , Proteoma/metabolismo
13.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542282

RESUMEN

Gaining insight into osmotic pressure and its biological implications is pivotal for revealing mechanisms underlying numerous fundamental biological processes across scales and will contribute to the biomedical and pharmaceutical fields. This review aims to provide an overview of the current understanding, focusing on two central issues: (i) how to determine theoretically osmotic pressure and (ii) how osmotic pressure affects important biological activities. More specifically, we discuss the representative theoretical equations and models for different solutions, emphasizing their applicability and limitations, and summarize the effect of osmotic pressure on lipid phase separation, cell division, and differentiation, focusing on the mechanisms underlying the osmotic pressure dependence of these biological processes. We highlight that new theory of osmotic pressure applicable for all experimentally feasible temperatures and solute concentrations needs to be developed, and further studies regarding the role of osmotic pressure in other biological processes should also be carried out to improve our comprehensive and in-depth understanding. Moreover, we point out the importance and challenges of developing techniques for the in vivo measurement of osmotic pressure.


Asunto(s)
Presión Osmótica , Soluciones , Temperatura
14.
Epigenetics ; 19(1): 2333665, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38525798

RESUMEN

Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.


Asunto(s)
Proteínas de Drosophila , Edición de ARN , Animales , Proteómica , Metilación de ADN , Mutación , Drosophila/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas de Drosophila/genética
15.
Chemosphere ; 355: 141784, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537714

RESUMEN

The improper use of synthetic pesticides has caused adverse effects on global ecosystems and human health. As a part of sustainable pest management strategy, natural predators, along with nano-pesticides, have made significant contributions to ecological agriculture. The cooperative application of both approaches may overcome their limitations, substantially reducing pesticide application while controlling insect pests efficiently. Herein, the current study introduced a cationic star polymer (SPc) to prepare two types of nano-pesticides, which were co-applied with predatory stinkbugs Picromerus lewisi to achieve perfect cooperative pest control. The SPc exhibited nearly no toxicity against predatory stinkbugs at the working concentration, but it led to the death of predatory stinkbugs at extremely high concentration with the lethal concentration 50 (LC50) value of 13.57 mg/mL through oral feeding method. RNA-seq analysis revealed that the oral feeding of SPc could induce obvious stress responses, leading to stronger phagocytosis, exocytosis, and energy synthesis to ultimately result in the death of predatory stinkbugs. Then, the broflanilide and chlorobenzuron were employed to prepare the self-assembled nano-pesticides via hydrogen bond and Van der Waals force, and the complexation with SPc broke the self-aggregated structures of pesticides and reduced their particle sizes down to nanoscale. The bioactivities of prepared nano-pesticides were significantly improved toward common cutworm Spodoptera litura with the corrected mortality increase by approximately 30%. Importantly, predatory stinkbugs exhibited a strong predation selectivity for alive common cutworms to reduce the exposure risk of nano-pesticides, and the nano-pesticides showed negligible toxicity against predators. Thus, the nano-pesticides and predatory stinkbugs could be applied simultaneously for efficient and sustainable pest management. The current study provides an excellent precedent for perfect cooperative pest control via nano-pesticide and natural predator.


Asunto(s)
Plaguicidas , Animales , Humanos , Plaguicidas/toxicidad , Ecosistema , Conducta Predatoria , Control Biológico de Vectores/métodos , Agricultura/métodos , Control de Plagas
16.
Ann Biomed Eng ; 52(6): 1706-1718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488988

RESUMEN

Osteogenic differentiation of mesenchymal stem cells (MSCs) is proposed to be critical for bone tissue engineering and regenerative medicine. However, the current approach for evaluating osteogenic differentiation mainly involves immunohistochemical staining of specific markers which often can be detected at day 5-7 of osteogenic inducing. Deep learning (DL) is a significant technology for realizing artificial intelligence (AI). Computer vision, a branch of AI, has been proved to achieve high-precision image recognition using convolutional neural networks (CNNs). Our goal was to train CNNs to quantitatively measure the osteogenic differentiation of MSCs. To this end, bright-field images of MSCs during early osteogenic differentiation (day 0, 1, 3, 5, and 7) were captured using a simple optical phase contrast microscope to train CNNs. The results showed that the CNNs could be trained to recognize undifferentiated cells and differentiating cells with an accuracy of 0.961 on the independent test set. In addition, we found that CNNs successfully distinguished differentiated cells at a very early stage (only 1 day). Further analysis showed that overall morphological features of MSCs were the main basis for the CNN classification. In conclusion, MSCs differentiation detection can be achieved early and accurately through simple bright-field images and DL networks, which may also provide a potential and novel method for the field of cell detection in the near future.


Asunto(s)
Diferenciación Celular , Aprendizaje Profundo , Células Madre Mesenquimatosas , Osteogénesis , Células Madre Mesenquimatosas/citología , Humanos , Células Cultivadas , Redes Neurales de la Computación , Animales
17.
Cell Mol Life Sci ; 81(1): 136, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478033

RESUMEN

BACKGROUND: Metazoan adenosine-to-inosine (A-to-I) RNA editing resembles A-to-G mutation and increases proteomic diversity in a temporal-spatial manner, allowing organisms adapting to changeable environment. The RNA editomes in many major animal clades remain unexplored, hampering the understanding on the evolution and adaptation of this essential post-transcriptional modification. METHODS: We assembled the chromosome-level genome of Coridius chinensis belonging to Hemiptera, the fifth largest insect order where RNA editing has not been studied yet. We generated ten head RNA-Seq libraries with DNA-Seq from the matched individuals. RESULTS: We identified thousands of high-confidence RNA editing sites in C. chinensis. Overrepresentation of nonsynonymous editing was observed, but conserved recoding across different orders was very rare. Under cold stress, the global editing efficiency was down-regulated and the general transcriptional processes were shut down. Nevertheless, we found an interesting site with "conserved editing but non-conserved recoding" in potassium channel Shab which was significantly up-regulated in cold, serving as a candidate functional site in response to temperature stress. CONCLUSIONS: RNA editing in C. chinensis largely recodes the proteome. The first RNA editome in Hemiptera indicates independent origin of beneficial recoding during insect evolution, which advances our understanding on the evolution, conservation, and adaptation of RNA editing.


Asunto(s)
Adenosina , ARN , Humanos , Animales , ARN/genética , Adenosina/genética , Intrones , Proteómica , Inosina/genética , Insectos/genética
18.
Zookeys ; 1190: 1-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298406

RESUMEN

A new Chinese ant species Carebaralaevicepssp. nov. is described based on the major and minor workers. This species is most similar to C.lusciosa (Wheeler, 1928) due to a spineless propodeum, the absence of horns, and a smooth head capsule. It is distinguished by the following features: (1) antenna 10-segmented; (2) katepisternum rugose-reticulate; (3) in major workers, lateral sides of head in full-face view parallel; (4) metanotal groove distinct, anterodorsal corner forming an acute tooth behind metanotal groove. Moreover, an updated key to Chinese Carebara species is presented based on major workers, with a checklist comprising a total of 36 Chinese Carebara species and subspecies. Morphological structures and scanning electron micrographs of the newly discovered species' minor and major workers are provided.

19.
Gigascience ; 13(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372702

RESUMEN

BACKGROUND: Lice (Psocodea: Phthiraptera) are one important group of parasites that infects birds and mammals. It is believed that the ancestor of parasitic lice originated on the ancient avian host, and ancient mammals acquired these parasites via host-switching from birds. Here we present the first chromosome-level genome of Menopon gallinae in Amblycera (earliest diverging lineage of parasitic lice). We explore the transition of louse host-switching from birds to mammals at the genomic level by identifying numerous idiosyncratic genomic variations. RESULTS: The assembled genome is 155 Mb in length, with a contig N50 of 27.42 Mb. Hi-C scaffolding assigned 97% of the bases to 5 chromosomes. The genome of M. gallinae retains a basal insect repertoire of 11,950 protein-coding genes. By comparing the genomes of lice to those of multiple representative insects in other orders, we discovered that gene families of digestion, detoxification, and immunity-related are generally conserved between bird lice and mammal lice, while mammal lice have undergone a significant reduction in genes related to chemosensory systems and temperature. This suggests that mammal lice have lost some of these genes through the adaption to environment and temperatures after host-switching. Furthermore, 7 genes related to hematophagy were positively selected in mammal lice, suggesting their involvement in the hematophagous behavior. CONCLUSIONS: Our high-quality genome of M. gallinae provides a valuable resource for comparative genomic research in Phthiraptera and facilitates further studies on adaptive evolution of host-switching within parasitic lice.


Asunto(s)
Amblycera , Parásitos , Animales , Aves de Corral , Cromosomas , Mamíferos
20.
Curr Biol ; 34(4): 916-922.e1, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38320551

RESUMEN

Phthirapteran lice (true lice or parasitic lice) are a major group of ectoparasitic insects living on their bird or mammal hosts during their entire life cycle.1 Due to their highly specialized lifestyles, they are extremely poorly represented in fossil records.2 Molecular clock estimations have speculated extensively about the origin time of parasitic lice,3,4 yet none have been confirmed unequivocally. Herein, we report a new family of stem chewing lice, based on two adult insects associated with several semiplume feathers preserved within a piece of Kachin amber from the mid-Cretaceous. They display some defining characteristics of the Amblycera, an early-diverging lineage of the crown lice group. These features include a wingless body, chewing mouthparts, narrow and small thorax, and short tarsus with elongated euplantulae. Our phylogenetic analysis places the new taxa in the Amblycera, and the discovery thus pushes back the lice fossil records by at least 55 million years. Furthermore, the new specimens show primitive characters such as compressed and club-shaped terminal segments of antennae, maxillary and labial palps, and unmodified femora of hind legs, providing key information for the evolutionary relationship between free-living booklice and parasitic lice. This suggests that some ectoparasitic characters defining the crown lice group might have evolved among amblyceran and non-amblyceran lice in parallel. These newly described fossil specimens imply at least a Cretaceous age of Phthiraptera.


Asunto(s)
Ischnocera , Phthiraptera , Animales , Plumas , Filogenia , Ámbar , Aves , Insectos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA