Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895211

RESUMEN

Regulatory elements are important constituents of plant genomes that have shaped ancient and modern crops. Their identification, function, and diversity in crop genomes however are poorly characterized, thus limiting our ability to harness their power for further agricultural advances using induced or natural variation. Here, we use DNA affinity purification-sequencing (DAP-seq) to map transcription factor (TF) binding events for 200 maize TFs belonging to 30 distinct families and heterodimer pairs in two distinct inbred lines historically used for maize hybrid plant production, providing empirical binding site annotation for 5.3% of the maize genome. TF binding site comparison in B73 and Mo17 inbreds reveals widespread differences, driven largely by structural variation, that correlate with gene expression changes. TF binding site presence-absence variation helps clarify complex QTL such as vgt1, an important determinant of maize flowering time, and DICE, a distal enhancer involved in herbivore resistance. Modification of TF binding regions via CRISPR-Cas9 mediated editing alters target gene expression and phenotype. Our functional catalog of maize TF binding events enables collective and comparative TF binding analysis, and highlights its value for agricultural improvement.

2.
Plant Cell ; 36(3): 510-539, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38000896

RESUMEN

A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.


Asunto(s)
Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Biosíntesis de Proteínas/genética , Perfilado de Ribosomas , Sistemas de Lectura Abierta/genética , Proteómica , MicroARNs/genética , MicroARNs/metabolismo
3.
Mol Cell Proteomics ; 23(2): 100705, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135118

RESUMEN

The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al GTP Heterotriméricas , Proteínas RGS , Arabidopsis/metabolismo , Fosforilación , Proteínas de Arabidopsis/metabolismo , Proteoma/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Flagelina/farmacología , Flagelina/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
4.
Front Plant Sci ; 13: 961096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082288

RESUMEN

FERONIA (FER) receptor kinase plays versatile roles in plant growth and development, biotic and abiotic stress responses, and reproduction. Autophagy is a conserved cellular recycling process that is critical for balancing plant growth and stress responses. Target of Rapamycin (TOR) has been shown to be a master regulator of autophagy. Our previous multi-omics analysis with loss-of-function fer-4 mutant implicated that FER functions in the autophagy pathway. We further demonstrated here that the fer-4 mutant displayed constitutive autophagy, and FER is required for TOR kinase activity measured by S6K1 phosphorylation and by root growth inhibition assay to TOR kinase inhibitor AZD8055. Taken together, our study provides a previously unknown mechanism by which FER functions through TOR to negatively regulate autophagy.

5.
New Phytol ; 236(3): 893-910, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35892179

RESUMEN

Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Sirolimus , Factores de Transcripción/metabolismo
6.
Plant Cell ; 34(7): 2594-2614, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35435236

RESUMEN

The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of multiomics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVE5 (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Glucosinolatos/metabolismo , Fosfotransferasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Nat Commun ; 12(1): 5858, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615886

RESUMEN

Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress response. Here we use a systems biology approach to integrate multi-omic datasets and unravel the molecular signaling events of BR response in Arabidopsis. We profile the levels of 26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites from Arabidopsis seedlings treated with brassinolide (BL) for six different lengths of time. We then construct a network inference pipeline called Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) to integrate these data. We use our network predictions to identify putative phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and we show that BRON expression is modulated by BR-responsive kinases and transcription factors. This work demonstrates the power of integrative network analysis applied to multi-omic data and provides fundamental insights into the molecular signaling events occurring during BR response.


Asunto(s)
Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica , Plantones/metabolismo , Esteroides Heterocíclicos , Factores de Transcripción/metabolismo
9.
RNA Biol ; 18(12): 2330-2341, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33849391

RESUMEN

The foot-and-mouth disease virus (FMDV) is the causative agent of FMD, a highly infectious and devastating viral disease of domestic and wild cloven-hoofed animals. FMD affects livestock and animal products' national and international trade, causing severe economic losses and social consequences. Currently, inactivated vaccines play a vital role in FMD control, but they have several limitations. The genetic code expansion technology provides powerful strategies for generating premature termination codon (PTC)-harbouring virus as a live but replication-incompetent viral vaccine. However, this technology has not been explored for the design and development of new FMD vaccines. In this study, we first expanded the genetic code of the FMDV genome via a transgenic cell line containing an orthogonal translation machinery. We demonstrated that the transgenic cells stably integrated the orthogonal pyltRNA/pylRS pair into the genome and enabled efficient, homogeneous incorporation of unnatural amino acids into target proteins in mammalian cells. Next, we constructed 129 single-PTC FMDV mutants and four dual-PTC FMDV mutants after considering the tolerance, location, and potential functions of those mutated sites. Amber stop codons individually substituted the selected amino acid codons in four viral proteins (3D, L, VP1, and VP4) of FMDV. We successfully rescued PTC-FMDV mutants, but the amber codon unexpectedly showed a highly degree of mutation rate during PTC-FMDV packaging and replication. Our findings highlight that the genetic code expansion technology for the generation of PTC-FMD vaccines needs to be further improved and that the genetic stability of amber codons during the packaging and replication of FMDV is a concern.


Asunto(s)
Codón sin Sentido , Codón de Terminación , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Proteínas Virales/genética , Replicación Viral , Animales , Animales Modificados Genéticamente , Cricetinae , Virus de la Fiebre Aftosa/aislamiento & purificación , Genoma Viral , Riñón/virología , Mutación
10.
Methods Mol Biol ; 2139: 147-156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32462584

RESUMEN

Proteins produce or regulate nearly every component of cells. Thus, the ability to quantitatively determine the protein abundance and posttranslational modification (PTM) state is a critical aspect toward our understanding of biological processes. In this chapter, we describe methods to globally quantify protein abundance and phosphorylation state using isobaric labeling with tandem mass tags followed by phosphopeptide enrichment.


Asunto(s)
Fosforilación/fisiología , Proteínas de Plantas/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Fosfopéptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/metabolismo
11.
Plant J ; 102(2): 299-310, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31778224

RESUMEN

The wheat AP2-like transcription factor gene Q has played a major role in domestication by conferring the free-threshing character and pleiotropically affecting numerous other traits. However, little information is known regarding the molecular mechanisms associated with the regulation of these traits by Q, especially for the structural determination of threshability. Here, transcriptome analysis of immature spike tissues in three lines nearly isogenic for Q revealed over 3000 differentially expressed genes (DEGs) involved in a number of pathways. Using phenotypic, microscopic, transcriptomic, and tissue-specific gene expression analyses, we demonstrated that Q governs threshability through extensive modification of wheat glumes including their structure, cell wall thickness, and chemical composition. Critical DEGs and pathways involved in secondary cell wall synthesis and regulation of the chemical composition of glumes were identified. We also showed that the mutation giving rise to the Q allele synchronized the expression of genes for micro-sporogenesis that affected pollen fertility, and may determine the final grain number for wheat spikes. Transcriptome dissection of genes and genetic pathways regulated by Q should further our understanding of wheat domestication and improvement.


Asunto(s)
Factores de Transcripción/genética , Transcriptoma , Triticum/genética , Alelos , Domesticación , Grano Comestible , Fertilidad/genética , Perfilación de la Expresión Génica , Mutación , Especificidad de Órganos , Fenotipo , Proteínas de Plantas/genética , Polen/genética
12.
Proteomics ; 19(24): e1900265, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31693794

RESUMEN

As molecular on-off switches, heterotrimeric G protein complexes, comprised of a Gα subunit and an obligate Gßγ dimer, transmit extracellular signals received by G protein-coupled receptors (GPCRs) to cytoplasmic targets that respond to biotic and abiotic stimuli. Signal transduction is modulated by phosphorylation of GPCRs and G protein complexes. In Arabidopsis thaliana, the Gα subunit AtGPA1 is phosphorylated by the receptor-like kinase (RLK) BRI1-associated Kinase 1 (BAK1), but the extent that other RLKs phosphorylates AtGPA1 is unknown. Twenty-two trans-phosphorylation sites on AtGPA1 are mapped by 12 RLKs hypothesized to act in the Arabidopsis G protein signaling pathway. Cis-phosphorylation sites are also identified on these RLKs, some newly shown to be dual specific kinases. Multiple sites are present in the core AtGPA1 functional units, including pSer52 and/or pThr53 of the conserved P-loop that directly binds nucleotide/phosphate, pThr164, and pSer175 from αE helix in the intramolecular domain interface for nucleotide exchange and GTP hydrolysis, and pThr193 and/or pThr194 in Switch I (SwI) that coordinates nucleotide exchange and protein partner binding. Several AtGPA1 S/T phosphorylation sites are potentially nucleotide-dependent phosphorylation patterns, such as Ser52/Thr53 in the P-loop and Thr193 and/or Thr194 in SwI.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Unión Proteica , Transducción de Señal
13.
Plant J ; 100(5): 923-937, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31357236

RESUMEN

Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress-responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factor RD26 is regulated by BR signaling and antagonizes BES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activate RD26 during drought are still unknown. Here, we demonstrate that the function of RD26 is modulated by GSK3-like kinase BIN2 and protein phosphatase 2C ABI1. We show that ABI1, a negative regulator in abscisic acid (ABA) signaling, dephosphorylates and destabilizes BIN2 to inhibit BIN2 kinase activity. RD26 protein is stabilized by ABA and dehydration in a BIN2-dependent manner. BIN2 directly interacts and phosphorylates RD26 in vitro and in vivo. BIN2 phosphorylation of RD26 is required for RD26 transcriptional activation on drought-responsive genes. RD26 overexpression suppressed the brassinazole (BRZ)  insensitivity of BIN2 triple mutant bin2 bil1 bil2, and BIN2 function is required for the drought tolerance of RD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relieves ABI1 inhibition of BIN2, allowing BIN2 activation. Sequentially, BIN2 phosphorylates and stabilizes RD26 to promote drought stress response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Sequías , Mutación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética
14.
Nat Commun ; 10(1): 3252, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324801

RESUMEN

Nucleotide-binding leucine-rich repeat (NLR) immune receptors play a critical role in defence against pathogens in plants and animals. However, we know very little about NLR-interacting proteins and the mechanisms that regulate NLR levels. Here, we used proximity labeling (PL) to identify the proteome proximal to N, which is an NLR that confers resistance to Tobacco mosaic virus (TMV). Evaluation of different PL methods indicated that TurboID-based PL provides more efficient levels of biotinylation than BioID and BioID2 in plants. TurboID-based PL of N followed by quantitative proteomic analysis and genetic screening revealed multiple regulators of N-mediated immunity. Interestingly, a putative E3 ubiquitin ligase, UBR7, directly interacts with the TIR domain of N. UBR7 downregulation leads to an increased amount of N protein and enhanced TMV resistance. TMV-p50 effector disrupts the N-UBR7 interaction and relieves negative regulation of N. These findings demonstrate the utility of TurboID-based PL in plants and the N-interacting proteins we identified enhance our understanding of the mechanisms underlying NLR regulation.


Asunto(s)
Proteínas NLR/inmunología , Nicotiana/inmunología , Proteínas de Plantas/inmunología , Receptores Inmunológicos/inmunología , Coloración y Etiquetado/métodos , Ubiquitina-Proteína Ligasas/inmunología , Proteínas NLR/metabolismo , Inmunidad de la Planta/inmunología , Proteínas de Plantas/metabolismo , Unión Proteica , Proteoma/inmunología , Proteoma/metabolismo , Receptores Inmunológicos/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/inmunología , Nicotiana/metabolismo , Nicotiana/virología , Virus del Mosaico del Tabaco/inmunología , Virus del Mosaico del Tabaco/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
15.
J Cell Biol ; 218(8): 2638-2658, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31235479

RESUMEN

Chloroplasts are of prokaryotic origin with a double-membrane envelope separating plastid metabolism from the cytosol. Envelope membrane proteins integrate chloroplasts with the cell, but envelope biogenesis mechanisms remain elusive. We show that maize defective kernel5 (dek5) is critical for envelope biogenesis. Amyloplasts and chloroplasts are larger and reduced in number in dek5 with multiple ultrastructural defects. The DEK5 protein is homologous to rice SSG4, Arabidopsis thaliana EMB2410/TIC236, and Escherichia coli tamB. TamB functions in bacterial outer membrane biogenesis. DEK5 is localized to the envelope with a topology analogous to TamB. Increased levels of soluble sugars in dek5 developing endosperm and elevated osmotic pressure in mutant leaf cells suggest defective intracellular solute transport. Proteomics and antibody-based analyses show dek5 reduces levels of Toc75 and chloroplast envelope transporters. Moreover, dek5 chloroplasts reduce inorganic phosphate uptake with at least an 80% reduction relative to normal chloroplasts. These data suggest that DEK5 functions in plastid envelope biogenesis to enable transport of metabolites and proteins.


Asunto(s)
Proteínas Bacterianas/química , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Zea mays/metabolismo , Cloroplastos/ultraestructura , Endospermo/metabolismo , Endospermo/ultraestructura , Genes de Plantas , Fenotipo , Fosfatos/metabolismo , Filogenia , Proteínas de Plantas/genética , Almidón/metabolismo , Almidón/ultraestructura , Zea mays/genética
16.
Plant Physiol ; 181(1): 367-380, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31248964

RESUMEN

Recent applications of translational control in Arabidopsis (Arabidopsis thaliana) highlight the potential power of manipulating mRNA translation for crop improvement. However, to what extent translational regulation is conserved between Arabidopsis and other species is largely unknown, and the translatome of most crops remains poorly studied. Here, we combined de novo transcriptome assembly and ribosome profiling to study global mRNA translation in tomato (Solanum lycopersicum) roots. Exploiting features corresponding to active translation, we discovered widespread unannotated translation events, including 1,329 upstream open reading frames (uORFs) within the 5' untranslated regions of annotated coding genes and 354 small ORFs (sORFs) among unannotated transcripts. uORFs may repress translation of their downstream main ORFs, whereas sORFs may encode signaling peptides. Besides evolutionarily conserved sORFs, we uncovered 96 Solanaceae-specific sORFs, revealing the importance of studying translatomes directly in crops. Proteomic analysis confirmed that some of the unannotated ORFs generate stable proteins in planta. In addition to defining the translatome, our results reveal the global regulation by uORFs and microRNAs. Despite diverging over 100 million years ago, many translational features are well conserved between Arabidopsis and tomato. Thus, our approach provides a high-throughput method to discover unannotated ORFs, elucidates evolutionarily conserved and unique translational features, and identifies regulatory mechanisms hidden in a crop genome.


Asunto(s)
Proteómica , Ribosomas/metabolismo , Solanum lycopersicum/genética , Transcriptoma , Regiones no Traducidas 5'/genética , Solanum lycopersicum/metabolismo , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
17.
J Proteome Res ; 18(5): 2088-2099, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30986076

RESUMEN

The condition of the placenta is a determinant of the short- and long-term health of the mother and the fetus. However, critical processes occurring in early placental development, such as trophoblast invasion and establishment of placental metabolism, remain poorly understood. To gain a better understanding of the genes involved in regulating these processes, we utilized a multiomics approach, incorporating transcriptome, proteome, and phosphoproteome data generated from mouse placental tissue collected at two critical developmental time points. We found that incorporating information from both the transcriptome and proteome identifies genes associated with time point-specific biological processes, unlike using the proteome alone. We further inferred genes upregulated on the basis of the proteome data but not the transcriptome data at each time point, leading us to identify 27 genes that we predict to have a role in trophoblast migration or placental metabolism. Finally, using the phosphoproteome data set, we discovered novel phosphosites that may play crucial roles in the regulation of placental transcription factors. By generating the largest proteome and phosphoproteome data sets in the developing placenta, and integrating transcriptome analysis, we uncovered novel aspects of placental gene regulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Placenta/metabolismo , Proteoma , Factores de Transcripción/genética , Transcriptoma , Trofoblastos/metabolismo , Secuencia de Aminoácidos , Animales , Conjuntos de Datos como Asunto , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Ratones , Anotación de Secuencia Molecular , Fosfoproteínas/clasificación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Placenta/citología , Embarazo , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo , Trofoblastos/citología
18.
New Phytol ; 221(2): 1023-1035, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256420

RESUMEN

DNA methylation is dynamically involved in plant immunity, but little information is known about its roles in plant interactions with biotrophic fungi, especially in temperate grasses such as wheat (Triticum aestivum). Using wheat diploid progenitor Aegilops tauschii accession AL8/78, the genome of which has been sequenced, we assessed the extent of DNA methylation in response to infection with Blumeria graminis f. sp. tritici (Bgt), which causes powdery mildew. Upon Bgt infection, ARGONAUTE4a (AGO4a) was significantly downregulated in A. tauschii, which was accompanied by a substantial reduction in AGO4a-sorted 24-nt siRNA levels, especially for genes near transposable elements (TAGs). Bisulfite sequencing revealed abundant differentially methylated regions (DMRs) with CHH hypomethylation. TAGs bearing CHH-hypomethylated DMRs were enriched for 'response to stress' functions, including receptor kinase, peroxidase, and pathogenesis-related genes. Virus-induced gene silencing (VIGS) of a DOMAINS REARRANGED METHYLASE 2 (DRM2) homolog enhanced plant resistance to Bgt. The effect of CHH hypomethylation was exemplified by the upregulation of a pathogenesis-related ß-1,3-glucanse gene implicated in Bgt defense. These findings support the idea that dynamic DNA methylation represents a regulatory layer in the complex mechanism of plant immunity, which could be exploited to improve disease resistance in common wheat.


Asunto(s)
Aegilops/genética , Ascomicetos/fisiología , Metilación de ADN , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Aegilops/inmunología , Aegilops/microbiología , Interacciones Huésped-Patógeno , Proteínas de Plantas/genética , Triticum/genética
19.
Proteomics ; 18(24): e1800323, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30407730

RESUMEN

The G-protein complex is a cytoplasmic on-off molecular switch that is set by plasma membrane receptors that activate upon binding of its cognate extracellular agonist. In animals, the default setting is the "off" resting state, while in plants, the default state is constitutively "on" but repressed by a plasma membrane receptor-like protein. De-repression appears to involve specific phosphorylation of key elements of the G-protein complex and possibly target proteins that are positioned downstream of this complex. To address this possibility, protein abundance and phosphorylation state are quantified in wild type and G-protein deficient Arabidopsis roots in the unstimulated resting state. A total of 3246 phosphorylated and 8141 non-modified protein groups are identified. It has been found that 428 phosphorylation sites decrease and 509 sites increase in abundance in the G-protein quadrupole mutant lacking an operable G-protein-complex. Kinases with known roles in G-protein signaling including MAP KINASE 6 and FERONIA are differentially phosphorylated along with many other proteins now implicated in the control of G-protein signaling. Taken together, these datasets will enable the discovery of novel proteins and biological processes dependent on G-protein signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fosfoproteínas/metabolismo , Raíces de Plantas/metabolismo , Proteoma/análisis , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al GTP Heterotriméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Heterotriméricas/genética , Mutación , Fosforilación , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal
20.
Front Plant Sci ; 9: 1282, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30298074

RESUMEN

The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein-protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA