Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Int J Biol Macromol ; : 132812, 2024 May 31.
Article En | MEDLINE | ID: mdl-38825275

Complexes of polysaccharides and proteins have superior physicochemical and functional properties compared to single proteins or polysaccharides. In this study, lactoferrin-hyaluronic acid (LF-HA) complexes were prepared by both ultrasonic and thermal treatment. Appropriate preparation conditions, including ultrasonic and thermal treatment conditions, have been established. The complexes formed by different methods were structurally characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis, fourier transform infrared spectroscopy, and circular dichroism spectroscopy. Ultrasound formed non-covalent binding, while thermal treatment generated covalent bonding, altering the structure of LF. The LF-HA complexes showed improved heat stability, foaming stability, emulsifying activity and antioxidant capacity, but deceased foaming ability. Iron binding ability could only be improved by HA through thermal treatment. Moreover, the in vitro digestibility of LF-HA complexes decreased to below 80 % compared to LF.

2.
Food Chem ; 441: 138400, 2024 May 30.
Article En | MEDLINE | ID: mdl-38199107

The low bioavailability and poor gastrointestinal instability of curcumin hampers its application in pharmaceutical and food industries. Thus, it is essential to explore efficient carrier (e.g. a combination of polyphenols and proteins) for food systems. In this study, covalent ß-lactoglobulin (LG)-dicaffeoylquinic acids (DCQAs) complexes were prepared by combining ultrasound and free radical induction methods. Covalent interactions between LG and DCQAs were confirmed by analyzing reactive groups. Variations in secondary or tertiary structure and potential binding sites of covalent complexes were explored using Fourier transform infrared spectroscopy and circular dichroism. Results showed that the ß-sheet content decreased and the unordered content increased significantly (P < 0.05). The embedding rate of curcumin in prepared LG-DCQAs complexes using ultrasound could reach 49 % - 62 %, proving that complexes could embed curcumin effectively. This study highlights the benefit of ultrasound application in fabrication of protein-polyphenol complexes for delivering curcumin.


Curcumin , Lactoglobulins , Quinic Acid/analogs & derivatives , Lactoglobulins/chemistry , Curcumin/chemistry , Binding Sites , Polyphenols/chemistry , Circular Dichroism , Spectroscopy, Fourier Transform Infrared
3.
Electrophoresis ; 45(3-4): 275-287, 2024 Feb.
Article En | MEDLINE | ID: mdl-37768831

Microcystin-LR (MC-LR), as a hepatotoxin, can cause liver swelling, hepatitis, and even liver cancer. In this study, MC-LR aptamer (Apt-3) modified graphene oxide (GO) was designed to enrich MC-LR in white jade snail (Achatina fulica) and pond water, followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis. Results indicated that the Apt-3/PEG/GO nanocomposites were highly specific to MC-LR, and the detection limit of MALDI-MS was 0.50 ng/mL. Moreover, the MC-LR can be released from nanocomposites at 75°C, thus, the reuse of Apt-3/PEG/GO is realized. Real sample analysis indicated that the Apt-3/PEG/GO nanocomposites coupled with MALDI-MS were efficient in detecting trace amounts of MC-LR in real samples. With the merits of being low cost, reusable, and easy to besynthesized, this Apt-3/PEG/GO MALDI-MS is expected to be comprehensively applied by anchoring suitable aptamers for different targets.


Graphite , Lasers , Marine Toxins , Microcystins , Oligonucleotides , Snails , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
Int J Biol Macromol ; 256(Pt 2): 128529, 2024 Jan.
Article En | MEDLINE | ID: mdl-38042327

Hyaluronic acid (HA) used as a food ingredient is gaining acceptance and popularity. However, the studies available for the effect of HA concentrations on the properties of ß-lactoglobulin (ß-LG) were limited. In this study, we investigated that the molecular characterization and functional properties of the complex formed by the non-covalent binding of ß-LG and HA, as well as the ultrasound-assisted treatment at acidic pH. The optimal pH and ratio of ß-LG/HA were set as 7 and 4:1, respectively. The fluorescence spectroscopy, circular dichroism spectroscopy, and molecular docking results revealed that the addition of HA and ultrasound induced a decrease in random coil and α-helix and an increase in ß-sheet contents in ß-LG. By the complexation with HA, the thermal stability, freezing stability, and antioxidant properties of ß-LG were all improved under ultrasound treatment. The results of the present study can be useful for the modulation of HA based biopolymer complexes and the exploitation as encapsulating or structuring agents in food industry.


Hyaluronic Acid , Lactoglobulins , Circular Dichroism , Molecular Docking Simulation , Lactoglobulins/chemistry , Molecular Conformation , Spectrometry, Fluorescence
5.
J Agric Food Chem ; 71(28): 10830-10840, 2023 Jul 19.
Article En | MEDLINE | ID: mdl-37401810

Bigeye tuna (BET, Thunnus obesus) is one of the most nutritious and luxurious cosmopolitan fish. The cooked BET products are capturing the interests of consumers by enhancing flavor and ensuring microbiological safety; however, the lipidomic fingerprints during daily cooking processes have not been investigated. In this work, lipid phenotypic data variation in BET during air-frying, roasting, and boiling was studied comprehensively using iKnife rapid evaporative ionization mass spectrometry (REIMS). The outstanding lipid ions mainly including fatty acids (FAs) and phospholipids (PLs) were identified structurally. It was demonstrated that the rates of heat transfer and lipid oxidation in air-fried BET were slower than those in roasted and boiled BET by elucidating the lipid oxidation and PL hydrolysis mechanism. Furthermore, multivariate REIMS data analysis (e.g., discriminant analysis, support vector machine, neutral network, and machine learning models) was used to characterize the lipid profile change in different cooked BET samples, among which FAC22:6, PL18:3/22:6, PL18:1/22:6, and others were the salient contributing features for determining the cooked BET samples. These results may provide a potential strategy for a healthy diet by controlling and improving functional food quality in daily cooking.


Phospholipids , Tuna , Animals , Mass Spectrometry , Fishes , Cooking
6.
Front Nutr ; 10: 1161970, 2023.
Article En | MEDLINE | ID: mdl-37139452

Pomegranate peels, the main byproduct of pomegranate production, are rich in phenolic compounds that are known for their effective antioxidant properties and have vast application prospects. In this study, steam explosion, an environmentally friendly technique, was applied to pretreat pomegranate peels for phenol extraction. We investigated the effects of explosion pressure, duration, and particle size on the content of total and individual phenolics, and antioxidant activity of pomegranate peels before and after in vitro digestion. The optimal conditions for a steam explosion for pomegranate peels in terms of total phenol content were a pressure of 1.5 MPa, a maintenance time of 90 s, and a particle size of 40 mesh. Under these conditions, pomegranate peel extract presented a higher yield of total phenols, gallic acid, and ellagic acid. However, it also had a lower content of punicalin and punicalagin, compared to the unexploded peels. There was no improvement in the antioxidant activity of pomegranate peels after the steam explosion. Moreover, the content of total phenol, gallic acid, ellagic acid, punicalin, and punicalagin, as well as the antioxidant activity of pomegranate peels, all increased after gastric digestion. Nevertheless, there was a large variation in the pomegranate peel processed by different pressure, duration, and sieve fractions. Overall, this study demonstrated that steam explosion pre-treatment could be an efficient method for improving the release of phenolics, especially gallic acid, and ellagic acid, from pomegranate peels.

7.
Ultrason Sonochem ; 95: 106401, 2023 May.
Article En | MEDLINE | ID: mdl-37060713

Dicaffeoylquinic acids (diCQAs) are found in a variety of edible and medicinal plants with various biological activities. An important issue is the low stability of diCQAs during extraction and food processing, resulting in the degradation and transformation. This work used 3,5-diCQA as a representative to study the influence of different parameters in ultrasonic treatment on the stability of diCQAs, including solvent, temperature, treatment time, ultrasonic power, duty cycle, and probe immersion depth. The generation of free radicals and its influence were investigated during the treatment. The stability of three diCQAs (3,5-diCQA, 4,5-diCQA and 3,4-diCQA) under the certain ultrasonic condition at different pH conditions was evaluated and found to decrease with the increase of pH, further weakened by ultrasonic treatment. Ultrasound was found to accelerate the degradation and isomerization of diCQAs. Different diCQAs showed different pattern of degradation and isomerization. The stability of diCQAs could be improved by adding epigallocatechin gallate and vitamin C.

8.
Int J Biol Macromol ; 237: 124193, 2023 May 15.
Article En | MEDLINE | ID: mdl-36990418

Plasmalogens (Pls) as the hydrophobic bioactive compound have shown potential in enhancing neurological disorders. However, the bioavailability of Pls is limited because of their poor water solubility during digestion. Herein, the hollow dextran sulfate/chitosan - coated zein nanoparticles (NPs) loaded with Pls was prepared. Subsequently, a novel in situ monitoring method utilizing rapid evaporative ionization mass spectrometry (REIMS) coupled with electric soldering iron ionization (ESII) was proposed to assess the lipidomic fingerprint alteration of Pls-loaded zein NPs during in vitro multiple-stage digestion in real time. A total of 22 Pls in NPs were structurally characterized and quantitatively analyzed, and the lipidomic phenotypes at each digestion stage were evaluated by multivariate data analysis. During multiple-stage digestion, Pls were hydrolyzed to lyso-Pls and free fatty acids by phospholipases A2, while the vinyl ether bond was retained at the sn-1 position. The result revealed that the contents of Pls groups were significantly reduced (p < 0.05). The multivariate data analysis results indicated that the ions at m/z 748.28, m/z 750.69, m/z 774.38, m/z 836.58, and etc. were the significant candidate contributors for monitoring the variation of Pls fingerprints during digestion. Results demonstrated that the proposed method exhibited potential for real-time tracking the lipidomic characteristics of nutritional lipid NPs digestion in the human gastrointestinal tract.


Nanoparticles , Zein , Humans , Plasmalogens , Lipidomics/methods , Mass Spectrometry/methods , Digestion
9.
Food Chem ; 417: 135868, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-36924722

Current production methods of the food colorants, gardenia blue (GB) and red (GR) pigments have low efficiency. One potential approach involves using lactic acid bacteria (LAB), which produce a high level of ß-glucosidase, produce the GB and GR using non-toxic and harmless process. The isolated strain Lactobacillus plantarum S3 and the reference strain Lb. plantarum KCTC3104 showed high ß-glucosidase activity levels of 1.01 and 1.44 unit/mL, respectively. The 12-h bioconversion yield of geniposide to genipin using two strains were 93.4% and 100%, respectively, which are high conversion percentage. For GB, the maximal production yield obtained using Lb. plantarum S3 and Lb. plantarum KCTC3104 under optimal conditions were 2.17 and 2.18 mg/mL, respectively. For GR, glutamic acid (Glu) with Lb. plantarum S3 is the best combination. To the best of our knowledge, this is the first report of an effective alternative method for the production of natural food colorants using LAB.


Cellulases , Food Coloring Agents , Gardenia , Lactobacillales , Lactobacillus plantarum
10.
Ultrason Sonochem ; 92: 106240, 2023 Jan.
Article En | MEDLINE | ID: mdl-36470128

The ß-lactoglobulin-chlorogenic acid (LG-CA) conjugate was explored to be formed through ultrasonication, redox-pair method and their combination, the ultrasonication used a probe ultrasonic machine with a 6 mm probe at 270 W, and the frequency was 20-25 kHz. The formation of the conjugate was confirmed by SDS-PAGE with a larger molecular weight. Besides, Fourier infrared spectroscopy (FTIR) and Circular dichroism (CD) indicated changes in the secondary structure of the LG-CA conjugate. The α-helix and ß-sheet contents of LG decreased and the unordered content increased significantly after the formation of covalent complexes. In addition, both the ultrasonic treatment and its combination with redox-pair method could significantly improve the antioxidant properties of LG. The former increased to 23.16 µmol Trolox/g sample, the latter 82-106 µmol Trolox/g sample. Therefore, ultrasonication could be used both individually and in combination with the redox-pair method to produce LG-CA conjugates with stronger antioxidant activities.


Chlorogenic Acid , Lactoglobulins , Lactoglobulins/chemistry , Antioxidants/pharmacology , Protein Structure, Secondary , Protein Conformation, alpha-Helical , Circular Dichroism
11.
Front Aging Neurosci ; 14: 993281, 2022.
Article En | MEDLINE | ID: mdl-36204557

The generation and accumulation of amyloid-beta peptide (Aß1-42) in amyloid plaques are key characteristics of Alzheimer's disease (AD); thus, specific detection of Aß1-42 is essential for the diagnosis and treatment of AD. Herein, an aptamer-conjugated graphene oxide (Apt-GO) sensor was synthesized by π-π and hydrophobic interactions using thiol poly (ethylene glycol) amine (SH-PEG-NH2) as a spacer unit. Then, it was applied to selective capture of Aß1-42, and the resulting complex was directly analyzed by surface-assisted laser desorption ionization mass spectrometry (SALDI-MS). The results revealed that the Apt-GO could enhance the detection specificity and reduce non-specific adsorption. This method was validated to be sensitive in detecting Aß1-42 at a low level in human serum (ca. 0.1 µM) within a linear range from 0.1 to 10 µM. The immobilizing amount of aptamer on the GO was calculated to be 36.1 nmol/mg (RSD = 11.5%). In conclusion, this Apt-GO-based SALDI-MS method was sensitive and efficient in selective extraction and detection of Aß1-42, which proved to be a good option for early AD diagnosis.

12.
Food Sci Nutr ; 10(7): 2370-2380, 2022 Jul.
Article En | MEDLINE | ID: mdl-35844905

A coated nanoemulsion (CNE)-based edible film was fabricated on the surface of fish floss (FF) to extend its shelf life during storage. The antioxidant tea polyphenol (TPP) was embedded into W/O microemulsion, which was further encapsulated into multiple emulsion (Multi-E) together with functional soluble dietary fiber (SDF). The physicochemical properties indicated that the nanoemulsion-based edible film (NEF) improved the morphology of FF and reduced the crystallinity of the film by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The water vapor permeability increased gradually and rose to only 0.99% after 5 h, resulting in the water activity of FF at a low level (≤0.51) during the storage period. The TPP inside was released at a constant rate (≤18.10%) on the surface, and such a rate was accelerated in the simulated gastrointestinal environment, especially in intestine reaching 60.12% after 5 h of digestion. Besides, the effect of NEF on the flavor was also evaluated and the contents of ketones, phenols, and pyrazines increased, which displayed a regulating effect on the overall flavor of FF by blocking the external moisture and suppressing the microorganism activity. In summary, the NEF effectively enhanced the flavor and taste of FF, controlled the release of TPP, and reduced the water activity during the storage, thereby extending the shelf life.

13.
Food Res Int ; 156: 111307, 2022 06.
Article En | MEDLINE | ID: mdl-35651067

As a high-value processed aquatic product, wet-aged tuna has gradually become a popular food, but its lipidomics characteristics during the aging process have not been investigated. Herein, the lipidomics phenotypic data of tuna at different wet-aging stages were acquired using iKnife rapid evaporative ionization mass spectrometry, in which the dominant lipid components, including fatty acid (FA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI), were structurally identified. Principal component analysis, permutation test, heatmap, and circos plot analysis were performed to characterize lipids in wet-aged tuna, among which FAC18:1, docosahexaenoic acid (DHA), and PIC18:0/22:6 were the most contributing components for determining the wet-aging stage of tuna. The results indicated that iKnife-REIMS is accurate (86.5%), reliable, and could be used in the real-time detection of tuna meat during different wet-aging stages.


Lipidomics , Tuna , Animals , Fatty Acids , Mass Spectrometry/methods , Meat/analysis
14.
Food Sci Nutr ; 10(6): 1888-1898, 2022 Jun.
Article En | MEDLINE | ID: mdl-35702289

Steam explosion (SE) pretreatment is an efficient technique to promote the fiber degradation and disrupt materials' cell wall. In this study, the effect of SE pretreatment on the changes in phenolic profile, and the in vitro digestion property of a Chinese indigenous herb "Hangbaiju" (HBJ) powder with various sieve fractions (150-, 180-, 250-, 425-, and 850-µm sieves) were studied. After SE pretreatment, the morphological structure, color attributes, and composition of phenolic compounds were altered significantly (p < .05). The composition and content of phenolic compounds were strongly correlated with particle sizes. The higher extraction yield of phenolic compounds was reached in the intermediate sieve fraction (ca. 250-µm sieves). During in vitro digestion, the changes in phenolic compounds were significant due to the transition from an acidic to the alkaline environment (p < .05). Based on the multivariate statistical analysis, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and linarin, were viewed as the characteristic compounds among various samples. The results highlighted that the phytochemical properties mainly including the composition of phenolic compounds, and in vitro digestion properties of HBJ powder with intermediate sieve fraction could be improved after SE pretreatment.

15.
Ultrason Sonochem ; 86: 106025, 2022 May.
Article En | MEDLINE | ID: mdl-35533432

It is essential to understand the ultrasound-induced changes in assembly of proteins and polyphenols into non covalent nanocomplex. ß-Lactoglobulin (LG) and chlorogenic acid (CA) with various biological activities can be combined to form food-grade nanocomplexes. This study systematically explored the role of high-intensity ultrasound pretreatment on the binding mechanisms of LG and CA, and the potential biological function for embedding curcumin (Cur). The scanning electron microscopy (SEM) revealed that ultrasound treatment could destroy the structure of LG, and the particle size of the protein was reduced to<50 nm. The change in secondary structure of the protein by ultrasound treatment could be revealed by the fourier transform infrared (FTIR) and fluorescence spectra. Besides, it was found that LG and CA were combined to form a complex under the hydrophobic interaction, and CA was bound in the internal cavity of LG with a relatively extended conformation. The result demonstrated that the ratio of Cur embedded in the ultrasonic sample could be effectively increased by 7% - 10%, the particle size in the emulsion was smaller, and the dispersion was more stable. This work contributes to the development of protein-polyphenol functional emulsion systems with the ability to deliver Cur.


Curcumin , Lactoglobulins , Chlorogenic Acid , Curcumin/chemistry , Emulsions , Hydrophobic and Hydrophilic Interactions , Lactoglobulins/chemistry , Polyphenols
16.
Front Aging Neurosci ; 13: 773713, 2021.
Article En | MEDLINE | ID: mdl-34899276

To investigate the underlying mechanisms of decreased plasmalogens (Pls) levels in neurodegenerative diseases, here the effects of seafood-derived Pls on undifferentiated and differentiated human SH-SY5Y neuroblastoma cells exposed to amyloid-ß1-42 was analyzed. Transcriptional profiles indicated that a total of 6,581 differentially expressed genes (DEGs) were significantly identified among different experimental groups, and KEGG analysis indicated that these DEGs were related to AD, endocytosis, synaptic vesicle cycle, autophagy and cellular apoptosis. After Pls treatment, the striking expression changes of ADORA2A, ATP6V1C2, CELF6, and SLC18A2 mRNA strongly suggest that Pls exerts a beneficial role in alleviating AD pathology partly by modulating the neurotransmitter release and synaptic transmission at the transcriptional level. Besides these, GPCRs are also broadly involved in Pls-signaling in neuronal cells. These results provide evidence for supporting the potential use of Pls as an effective therapeutic approach for AD.

17.
Ultrason Sonochem ; 80: 105812, 2021 Dec.
Article En | MEDLINE | ID: mdl-34736117

Caffeoylquinic acids are existed in many plant species with various biological and pharmacological activities. 3-O-caffeoylquinic acid and 4-O-caffeoylquinic acid are two isomers of caffeoylquinic acids, which may be degraded and transformed to their isomers in processing. The present paper found that the stability of 3- and 4-O-caffeoylquinic acid had decreased with the increasing solution alkalinity. 3-O-caffeoylquinic acid was more stable than 4-O-caffeoylquinic acid at the same condition. During degradation, 3- and 4-O-caffeoylquinic acid were partially converted to their isomers. Additionally, ultrasonic effects on the degradation and isomerization of 3- and 4-O-caffeoylquinic acid at different pH were studied. Ultrasound facilitated the degradation and isomerization of these compounds. The degradation kinetics were described by the Weibull equation. The protective effect of ascorbic acid and epigallocatechin gallate were also explored. Ascorbic acid and epigallocatechin gallate could alleviate the degradation of 3- and 4-O-caffeoylquinic acid under certain conditions.

18.
Food Funct ; 12(23): 12087-12097, 2021 Nov 29.
Article En | MEDLINE | ID: mdl-34783821

Plasmalogens (PLs) are critical to human health. Studies have reported a link between the downregulation of PLs levels and cognitive impairments in patients with Alzheimer's disease (AD). However, the underlying mechanisms remain to be clarified. In the present study, an AlCl3-induced AD zebrafish model was established, and the model was used to elucidate the neuroprotective effects of PLs on AD by analysing the transcriptional profiles of zebrafish in the control, AD model, AD_PL, and PL groups. Chronic AlCl3 exposure caused swimming performance impairments in the zebrafish, yet PLs supplementation could improve the dyskinesia recovery rate in the AD zebrafish model. Through transcriptional profiling, a total of 5413 statistically significant differentially expressed genes (DEGs) were identified among the groups. In addition to the DEGs involved in amino acid metabolism, we found that the genes related to iron homeostasis, lipid peroxidation, and oxidative stress, all of which contribute to ferroptosis, were dramatically altered among different groups. These results suggest that seafood-derived PLs, in addition to their role in eliminating oxidative stress, can improve the swimming performance in AlCl3-exposed zebrafish partly by suppressing neuronal ferroptosis and accelerating synaptic transmission at the transcriptional level. This study provides evidence for PLs to be developed as a functional food supplement to relieve AD symptoms.


Alzheimer Disease/metabolism , Lipid Metabolism/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Plasmalogens/pharmacology , Amino Acids/metabolism , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Ferroptosis/drug effects , Swimming/physiology , Zebrafish
19.
J Agric Food Chem ; 69(48): 14699-14712, 2021 Dec 08.
Article En | MEDLINE | ID: mdl-34843234

Sea cucumber (Stichopus japonicus) is one of the most luxurious and nutritious seafoods in Asia. It is always processed into dried products to prevent autolysis, but its quality is easily destructed during storage. Herein, an extremely simplified workflow was established for real-time and in situ quality assessment of dried sea cucumbers (DSCs) during storage based on the lipid oxidation characteristics using an intelligent surgical knife (iKnife) coupled with rapid evaporative ionization mass spectrometry (REIMS). The lipidomic phenotypes of DSCs at different storage times were acquired successfully, which were then processed by multivariate statistical analysis. The results showed that the discrepancy in the characteristic ions in different DSCs was significant (p < 0.05) with high R2(Y) and Q2 values (0.975 and 0.986, respectively). The receiver operating characteristic curve revealed that the ions of m/z 739.5, m/z 831.5, m/z 847.6, and m/z 859.6 were the most specific and characteristic candidate biomarkers for quality assessment of DSCs during accelerated storage. Finally, this method was validated to be qualified in precision (RSDintraday ≤ 9.65% and RSDinterday ≤ 9.36%). In conclusion, the results showed that the well-established iKnife-REIMS method was high-throughput, rapid, and reliable in the real-time quality assessment of DSCs.


Sea Cucumbers , Stichopus , Animals , Lipidomics , Mass Spectrometry , Seafood/analysis
20.
J Agric Food Chem ; 69(41): 12187-12196, 2021 Oct 20.
Article En | MEDLINE | ID: mdl-34623133

Plasmalogens (Pls) are bioactive substances enriched in the brain with a regulatory effect on Alzheimer's disease (AD), while their metabolomic influence accompanying AD and the underlying mechanisms remain unclear. Here, we extracted and purified Pls (purity of ≥90%) from mussels and applied unbiased metabolomics using ultraperformance liquid chromatography Q-Exactive Orbitrap mass spectrometry to analyze the variation of metabolites in the major metabolic pathways of AD and revealed the cognitive improvement effect of Pls using an experimental AD zebrafish model. The results showed that 37 differential endogenous metabolites were identified, among which glycerophosphocholine, choline, S-adenosylmethionine (SAM), l-glutamine, linoleic acid, 9(S)-HPODE, methionine, and creatine were the major abnormally regulated metabolites, and the first four metabolites were viewed as potential endogenous markers. This study suggested that systemic metabolic profiling could reveal the potential metabolic networks of AD and illuminated the protective effect of Pls on AD through biochemistry mechanisms and metabolic pathways.


Alzheimer Disease , Bivalvia , Animals , Biomarkers , Chromatography, High Pressure Liquid , Chromatography, Liquid , Mass Spectrometry , Metabolomics , Plasmalogens , Zebrafish
...