Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Environ Sci Pollut Res Int ; 31(12): 18527-18539, 2024 Mar.
Article En | MEDLINE | ID: mdl-38347358

Dissolved organic matter (DOM) derived from biochar takes a crucial role in transport and bioavailability toward contaminants; hence, it is undeniable that a thorough analysis of its properties is important. So far, the effect of pyrolysis temperature on the functional groups, components, and evolutionary sequence of manure-based biochar DOM has not been adequately investigated. Here, DOM was released from two typical livestock manures (cow and pig) at five pyrolysis temperatures (300 ~ 700°C), and it was explored in depth with the aid of moving window 2D correlation spectroscopy (MW-2D-COS) and heterogeneous 2D correlation spectroscopy (hetero-2D-COS). The results demonstrated that the concentration, aromaticity, and hydrophobicity of DOM were greater at high temperatures, and more DOM was liberated from cow manure-based biochar at identical temperature. Protein-like compounds dominated at high temperatures. The pyrolysis temperatures of final configuration transformation points of the fulvic acid-like component and the aromatic ring C=C in DOM were 400°C and 500°C, respectively. Moreover, Fourier transform infrared spectroscopy combined with two-dimensional correlation analysis indicated that the functional group evolution of DOM depends on the pyrolysis temperature and feedstock type. The study provides a new perspective on manure management and environmental applications of biochar.


Dissolved Organic Matter , Manure , Animals , Swine , Temperature , Humic Substances/analysis , Pyrolysis , Charcoal/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrometry, Fluorescence
2.
Front Cell Dev Biol ; 12: 1286222, 2024.
Article En | MEDLINE | ID: mdl-38374895

Intervertebral disc degeneration (IDD) is the main cause of low back pain (LBP), which significantly impacts global wellbeing and contributes to global productivity declines. Conventional treatment approaches, encompassing conservative and surgical interventions, merely serve to postpone the advancement of IDD without offering a fundamental reversal. Consequently, there is an urgent demand for an effective approach to prevent the progression of IDD. Recent investigations focusing on the treatment of IDD utilizing diverse bioactive substances integrated within various biomaterials have exhibited promising outcomes. Various bioactive substances, encompassing conventional small molecule drugs, small molecule nucleic acids, and cell therapies, exhibit distinct capacities for repairing IDD. Additionally, various biological material delivery systems, such as nano micelles, microspheres, and hydrogels, possess diverse biological and release characteristics. Consequently, these diverse materials and drugs hold promise for advancing the treatment of IDD. This article aims to provide a concise overview of the IDD process and investigate the research advancements in biomaterials and bioactive substances for IDD treatment, delving into their mechanisms.

3.
Anal Chem ; 95(35): 13385-13390, 2023 09 05.
Article En | MEDLINE | ID: mdl-37622311

The development of liquid crystal (LC)-based sensors with superior performances such as high portability, excellent stability, great convenience, and remarkable sensitivity is highly demanded. This work proposes a new strategy for constructing the LC-based sensor using enzyme-linked dual-functional nucleic acid (d-FNA) on magnetic beads (MBs). The detection of kanamycin (KA) is demonstrated as a model. Acetylcholinesterase (AChE) is assembled onto the KA aptamer-modified MBs with a d-FNA strand that consists of an AChE aptamer and the complementary sequence of a KA aptamer. As the specific recognition of KA by its aptamer triggers the release of AChE from the MBs, the myristoylcholine (Myr) solution after incubation with the MBs causes the black image of the LCs due to the formation of the Myr monolayer at the aqueous/LC interface. Otherwise, in the absence of KA, AChE is still decorated on the MBs and causes the hydrolysis of Myr. Therefore, a bright image of LCs is obtained. The detection of KA is successfully achieved with a lower detection limit of 48.1 pg/mL. In addition, a thin polydimethylsiloxane (PDMS) layer-coated glass and a portable optical device are used to improve the stability and portability of the LC-based sensor to advance potential commercial applications. Furthermore, the detection of KA in milk with a portable device is demonstrated, showing the potential of the proposed enzyme-linked LC-based sensor.


Liquid Crystals , Nucleic Acids , Optical Devices , Acetylcholinesterase , Kanamycin , Oligonucleotides , Magnetic Phenomena
4.
Heliyon ; 9(2): e13357, 2023 Feb.
Article En | MEDLINE | ID: mdl-36816253

Multimode fibers (MMF) have been extensively investigated for transmitting images. The transmitting images are distorted into speckle patterns by MMFs, which can be reconstructed by neural networks. We studied the information distribution of MMF speckle patterns for image reconstruction. The speckle patterns, segmented by three methods of segmentation, as Centering (1), Quartering (2) and Surrounding (3), are reconstructed into input images by Complex Artificial Neural Network (CANN). Experimental results show that only about one third of full speckle patterns is enough to reconstruct the original images. The quality of reconstructed image is related to the cropping method with different frequency components in speckle patterns, under the same cropped size, Centering segmentation has 4% performance improvement compared to Surrounding segmentation. Optimized segmentation will improve the quality of reconstructed images.

5.
Front Psychol ; 13: 1045845, 2022.
Article En | MEDLINE | ID: mdl-36438409

The present study is developed based on conservation of resources theory (COR) to explore the underlying mechanism and boundary condition for the relationship between helping behavior and innovative behavior. To avoid the shortages of cross-sectional data, the present study collected two-wave and multi-source data. By collecting from 193 full-time Chinese workers and 68 supervisors at two separate time points, this study developed and examined a moderated mediation model using Mplus 7.0. The results show that helping behavior increases innovative behavior through enhancing positive affect, and psychological meaningfulness moderates the indirect relationship between helping behavior and innovative behavior through positive affect. In the condition of high psychological meaningfulness, helping behavior has a stronger indirect impact on innovative behavior through enhancing positive affect. This study enriches the literature on the outcomes of helping behavior. Moreover, this study provides several managerial implications to amplify the positive impact of helping behavior on innovative behavior. This study develops several strategies to enhance psychological meaningfulness and promote the benefits of helping behavior.

6.
J Control Release ; 350: 613-629, 2022 10.
Article En | MEDLINE | ID: mdl-36058354

In this study, an adipic acid dihydrazide (ADH)/ tannic acid (TA)-grafted hyaluronic acid (HA)-based multifunctional hydrogel was synthesized through a spontaneous amino-yne click reaction and used to promote the improved healing of infected diabetic wounds. This hydrogel exhibited a range of beneficial properties such as tunable gelation time, adjustable mechanical properties, pH-sensitive response characteristics, excellent injectability, the ability to readily adhere to tissue, and ultra-intimate contact capabilities. Following the encapsulation of ultrasmall Ag nanoclusters (AgNCs) and deferoxamine loaded polydopamine/ hollow mesoporous manganese dioxide (PHMD, PDA/H-mMnO2@DFO) nanoparticles, the prepared hydrogel presented with robust antibacterial, anti-inflammatory, and pro-angiogenic properties and a desirable smart drug release profile. In this fabricated platform, PHMD was able to effectively alleviate localized oxidative stress and prolonged oxygen deprivation via the decomposition of endogenous H2O2 to produce O2. Further in vivo assays revealed that this hydrogel was capable of facilitating the healing of infected wounds through the sequential engagement of antibacterial, anti-inflammatory, and pro-angiogenic activities. Together, this synthesized clickable environmentally-responsive hydrogel offers great promise as a tool that can be applied to aid in the healing of chronically infected diabetic wounds and other inflammatory conditions.


Diabetes Mellitus , Hyaluronic Acid , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Deferoxamine , Humans , Hydrogels , Hydrogen Peroxide , Oxygen , Tannins
7.
J Food Sci Technol ; 58(7): 2734-2748, 2021 Jul.
Article En | MEDLINE | ID: mdl-34194109

Biogenic amines (BAs) are a threat to the safety of broad bean paste, and biosynthetic mechanism of BA and its regulation are unknown. This study aimed to assess microbial BA synthesis in Chinese traditional broad bean paste and determine favorable fermentation conditions for BA regulation. The BAs content in 27 pastes was within the safe range. 64 strains with potential decarboxylation were screened in Luria-Bertani Glycerol medium and identified as Bacillus spp. Although Bacillus amyloliquefaciens produced highest levels of BAs (70.14 ± 2.69 mg/L) in LBAA, Bacillus subtilis produced 6% more BAs than B. amyloliquefaciens. Meanwhile, temperature was the most remarkable factor affecting BAs production by B. amyloliquefaciens 1-13. Furthermore, the fermented broad bean paste model revealed that BA content increased by 61.2 mg/kg every 10 days at 45 °C, which was approximately threefold of that at 25 °C. An ARIMA prediction model of BAs content was constructed, and the total BAs content of 40 mg/100 g was set as the critical value. This study not only contributed to understanding the BAs formation mechanism, but also provided potential measures to control the BAs in fermented soybean products.

8.
Haematologica ; 104(9): 1768-1781, 2019 09.
Article En | MEDLINE | ID: mdl-30792208

Genetic iron-overload disorders, mainly hereditary hemochromatosis and untransfused ß-thalassemia, affect a large population worldwide. The primary etiology of iron overload in these diseases is insufficient production of hepcidin by the liver, leading to excessive intestinal iron absorption and iron efflux from macrophages. Hepcidin agonists would therefore be expected to ameliorate iron overload in hereditary hemochromatosis and ß-thalassemia. In the current study, we screened our synthetic library of 210 thiazolidinone compounds and identified three thiazolidinone compounds, 93, 156 and 165, which stimulated hepatic hepcidin production. In a hemochromatosis mouse model with hemochromatosis deficiency, the three compounds prevented the development of iron overload and elicited iron redistribution from the liver to the spleen. Moreover, these compounds also greatly ameliorated iron overload and mitigated ineffective erythropoiesis in ß-thalassemic mice. Compounds 93, 156 and 165 acted by promoting SMAD1/5/8 signaling through differentially repressing ERK1/2 phosphorylation and decreasing transmembrane protease serine 6 activity. Additionally, compounds 93, 156 and 165 targeted erythroid regulators to strengthen hepcidin expression. Therefore, our hepcidin agonists induced hepcidin expression synergistically through a direct action on hepatocytes via SMAD1/5/8 signaling and an indirect action via eythroid cells. By increasing hepcidin production, thiazolidinone compounds may provide a useful alternative for the treatment of iron-overload disorders.


Hemochromatosis/drug therapy , Iron Overload/drug therapy , Thiazolidinediones/pharmacology , beta-Thalassemia/drug therapy , Animals , Chemistry, Pharmaceutical , Combinatorial Chemistry Techniques , Disease Models, Animal , Drug Design , Erythropoiesis/drug effects , Hepcidins/agonists , Hepcidins/biosynthesis , Liver/drug effects , Male , Mice , Phosphorylation , Signal Transduction
9.
Adv Sci (Weinh) ; 5(11): 1800866, 2018 Nov.
Article En | MEDLINE | ID: mdl-30479929

Determination of iron accumulation is crucial in diagnosing the occurrence and progression of many liver- and iron-related diseases. Thus far, little is known about the profiles of iron deposition in different liver zones, particularly under conditions with disordered iron homeostasis. Here, uneven iron distribution in livers of patients with hereditary hemochromatosis (HH) is uncovered, showing the region with the highest iron concentration near the entrance site of the portal vein and hepatic artery in contrast to the sites with the lowest iron concentration close to the distal edge. Distinct iron distribution profiles are also found throughout liver zones in wild-type mice and various mouse models with iron metabolism disorders, including hemochromatosis (Hfe-/- ), iron deficiency, and inflammation. Of note, similar findings observed in HH patients are further demonstrated in Hfe-/- mice. Moreover, the zones with greater iron accumulation appear to be more sensitive to iron changes, e.g., there is iron increase upon iron overload and iron loss in response to iron deficiency. Mechanistic investigation manifests that these differential iron changes in liver zones are subjected to the regulation by the hepcidin-ferroportin axis. Additionally, the data corroborate the reliability of magnetic resonance imaging (MRI) in recognizing the differential iron deposition profiles among liver zones.

10.
Sci Rep ; 8(1): 1761, 2018 01 29.
Article En | MEDLINE | ID: mdl-29379082

Mammal embryos can be impaired by mother's excessive ethanol uptake, which induces a higher level of reactive oxygen species (ROS) and interferes in one carbon unit metabolism. Here, our analysis by in vitro culture system reveals immediate effect of ethanol in medium on mouse embryo development presents concentration dependent. A preimplantation embryo culture using medium contained 1% ethanol could impact greatly early embryos development, and harmful effect of ethanol on preimplantation embryos would last during the whole development period including of reducing ratio of blastocyst formation and implantation, and deteriorating postimplantation development. Supplement of 50 µg/ml betaine into culture medium can effectively reduce the level of ROS caused by ethanol in embryo cells and rescue embryo development at each stage damaged by ethanol, but supplement of glycine can't rescue embryo development as does betaine. Results of 5-methylcytosine immunodetection indicate that supplement of betaine into medium can reduce the rising global level of genome DNA methylation in blastocyst cells caused by 1% ethanol, but glycine can't play the same impact. The current findings demonstrate that betaine can effectively rescue development of embryos harmed by ethanol, and possibly by restoring global level of genome DNA methylation in blastocysts.


Betaine/pharmacology , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Ethanol/pharmacology , Animals , Blastocyst/drug effects , Blastocyst/metabolism , Culture Media/pharmacology , DNA Methylation/drug effects , Embryo Culture Techniques/methods , Embryo Implantation/drug effects , Embryo, Mammalian/metabolism , Female , Male , Mice , Mice, Inbred ICR , Reactive Oxygen Species/metabolism
11.
Ecotoxicol Environ Saf ; 150: 207-214, 2018 Apr 15.
Article En | MEDLINE | ID: mdl-29276956

In spite of the considerable efforts invested to understand the environmental health and safety (EHS) impacts of ultrafine particles, such as the representative PM2.5, there are still significant knowledge gaps to be filled. No conclusive understandings have been obtained about the physicochemical determinants in accounting for differential adverse outcomes. Here we compared the cytotoxicity of four carbon black (CB) particles with similar physicochemical properties except for their oxygen contents (C824455 < C1864 < Printex U < SB4A). We found that these four CB particles manifested in vitro and in vivo cytotoxicity reversely related to their oxygen contents, namely a hierarchy of cytotoxicity: C824455 > C1864 > Printex U > SB4A. Among these CB particles, the most significant lung injury (e.g. collapses and inflammation) and macrophagic activation were found for C824455 and C1864, in particular for C824455. All these differences in toxicity profiles, including in vitro and in vivo cytotoxicity, pro-inflammatory effects and direct damages to the lung epithelia, should be (at least partially) ascribed to the oxygen content in these CB particles that in turn determined their transformation, i.e. the different aggregation states. Nonetheless, PM2.5 likewise caused severe in vivo and in vitro toxicities to the lung cells and macrophages. This study thus offers more insights into the structure-activity relationship (SAR) and opens a new avenue to elucidate the physicochemical determinants in evoking lung injuries by ultrafine airborne particles.


Lung/drug effects , Macrophages/drug effects , Oxygen/toxicity , Pneumonia/chemically induced , Soot/toxicity , Animals , Cell Count , Cell Line , Cell Survival/drug effects , Lung/pathology , Macrophages/pathology , Male , Mice, Inbred BALB C , Oxygen/analysis , Particle Size , Pneumonia/pathology , Soot/chemistry , Structure-Activity Relationship , Surface Properties
12.
Small ; 13(15)2017 04.
Article En | MEDLINE | ID: mdl-28195425

Although numerous toxicological studies have been performed on carbon nanotubes (CNTs), a few studies have investigated their secondary and indirect effects beyond the primary target tissues/organs. Here, a cascade of events are investigated: the initiating event and the subsequent key events necessary for the development of phenotypes, namely CNT-induced pro-inflammatory effects on iron homeostasis and red blood cell formation, which are linked to anemia of inflammation (AI). A panel of CNTs are prepared including pristine multiwall CNTs (P-MWCNTs), aminated MWCNTs (MWCNTs-NH2 ), polyethylene glycol MWCNTs (MWCNTs-PEG), polyethyleneimine MWCNTs (MWCNTs-PEI), and carboxylated MWCNTs (MWCNTs-COOH). It has been demonstrated that all CNT materials provoke inflammatory cytokine interleukin-6 (IL-6) production and stimulate hepcidin induction, associated with disordered iron homeostasis, irrespective of exposure routes including intratracheal, intravenous, and intraperitoneal administration. Meanwhile, PEG and COOH modifications can ameliorate the activation of IL-6-hepcidin signaling. Long-term exposure of MWCNTs results in AI and extramedullary erythropoiesis. Thus, an adverse outcome pathway is identified: MWCNT exposure leads to inflammation, hepatic hepcidin induction, and disordered iron metabolism. Together, the combined data depict the hazardous secondary toxicity of CNTs in incurring anemia through inflammatory pathway. This study will also open a new avenue for future investigations on CNT-induced indirect and secondary adverse effects.


Anemia/chemically induced , Homeostasis , Inflammation/chemically induced , Iron/metabolism , Nanotubes, Carbon/adverse effects , Anemia/pathology , Animals , Erythrocytes/drug effects , Erythrocytes/metabolism , Hematopoiesis, Extramedullary , Hepcidins/pharmacology , Homeostasis/drug effects , Inflammation/pathology , Inhalation Exposure , Interleukin-6/metabolism , Liver/pathology , Lung/pathology , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , Nanotubes, Carbon/ultrastructure , Spleen/pathology , Splenomegaly/pathology
...