Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Environ Geochem Health ; 46(10): 377, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167306

RESUMEN

As the most common endocrine cancer, thyroid cancer (TC) has sharply increased globally over the past three decades. The growing incidence of TC might be counted by genetics, radiation, iodine, autoimmune disease, and exposure to environmental endocrine-disrupting chemicals (EDCs). Polybrominated diphenyl ethers (PBDEs), being typical EDCs, have been widely utilized in plastics, electronics, furniture, and textiles as flame retardants since the 1980s, and research has indicated a significant correlation between their exposure and the risk of TC. Even so, PBDEs exposure impact on the metabolic signature for TC remains unexplored. In this study, eight congeners of PBDEs were determined in serum from 111 patents with papillary thyroid cancer (PTC) and 111 healthy participants based on case-control epidemiology using gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (GC-APCI-MS/MS). Based on the tertile distribution of total PBDEs concentrations in 59 participants, metabolomics analysis was further performed by ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap MS. In the partial correlation analysis, the 29 identified metabolites were correlated with PBDEs exposure (P < 0.05). In addition, PBDEs disrupted the metabolism of glycerophospholipids, sphingolipids, taurine, and hypotaurine, indicating that neurotransmitters, oxidative stress, and inflammation are the vulnerable pathways affected in PTC. Furthermore, (±)-octopamine and 5-hydroxyindole, both of which modulate the actions of neurotransmitters, emerged as potential disturbed metabolite markers for TC following exposure to PBDEs. This study analyzed the impact of PBDEs on PTC in terms of the metabolic changes and further explored possible biomarkers, which helped us have a deep understanding of the possible mechanism of the effects of PBDEs on TC.


Asunto(s)
Éteres Difenilos Halogenados , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Éteres Difenilos Halogenados/sangre , Estudios de Casos y Controles , Femenino , Neoplasias de la Tiroides/sangre , Neoplasias de la Tiroides/inducido químicamente , Masculino , Persona de Mediana Edad , Adulto , Cáncer Papilar Tiroideo/sangre , Contaminantes Ambientales/sangre , Exposición a Riesgos Ambientales , Cromatografía de Gases y Espectrometría de Masas , Anciano
2.
Mikrochim Acta ; 191(8): 503, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096341

RESUMEN

An upconversion fluorescence sensing platform was developed with upconversion nanoparticles (UCNPs) as energy donors and gold nanoparticles (AuNPs) as energy acceptors, based on the FRET principle. They were used for quantitative detection of uranyl ions (UO22+) by amplifying the signal of the hybrid chain reaction (HCR). When UO22+ are introduced, the FRET between AuNPs and UCNPs can be modulated through a HCR in the presence of high concentrations of sodium chloride. This platform provides exceptional sensitivity, with a detection limit as low as 68 pM for UO22+ recognition. We have successfully validated the reliability of this method by analyzing authentic water samples, achieving satisfactory recoveries (89.00%-112.50%) that are comparable to those of ICP-MS. These results indicate that the developed sensing platform has the capability to identify trace UO22+ in complex environmental samples.

3.
Bioengineering (Basel) ; 11(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39199741

RESUMEN

Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.

4.
Zhonghua Nan Ke Xue ; 30(3): 241-248, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-39177391

RESUMEN

OBJECTIVE: To explore the potential action mechanism of Huotu Jiji Pellets (HJP) in the treatment of erectile dysfunction (ED) based on network pharmacology and molecular docking. METHODS: We identified the main effective compounds and active molecular targets of HJP from the database of Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Integrative Pharmacology-Based Research Platform of Traditional Chinese Medicine (TCMIP) and the therapeutic target genes of ED from the databases of Genecards. Then we obtained the common targets of HJP and ED using the Venny software, constructed a protein-protein interaction (PPI) network of HJP acting on ED, and screened out the core targets with the Cytoscape software. Lastly we performed GO functional enrichment and KEGG pathway enrichment analyses of the core targets followed by molecular docking of HJP and the core targets using Chem3D and AutoDock Tools and QuickVina-W software. RESULTS: A total of 64 effective compounds, 822 drug-related targets, 1 783 disease-related targets and 320 common targets were obtained in this study. PPI network analysis showed that the core targets of HJP for ED included ESR1, HSP90AA1, SRC, and STAT3. GO functional enrichment analysis indicated the involvement of the core targets in such biological processes as response to xenobiotic stimulus, positive regulation of kinase activity, and positive regulation of MAPK cascade. KEGG pathway enrichment analysis suggested that PI3K-Akt, apoptosis, MAPK, HIF-1, VEGF, autophagy and other signaling pathways may be related to the mechanism of HJP acting on ED. Molecular docking prediction exhibited a good docking activity of the key active molecules of HJP with the core targets. CONCLUSION: This study showed that HJP acted on ED through multi-components, multi-targets and multi-pathways, which has provided some evidence and reference for the clinical treatment and subsequent studies of the disease.


Asunto(s)
Medicamentos Herbarios Chinos , Disfunción Eréctil , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Masculino , Disfunción Eréctil/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Humanos , Transducción de Señal
6.
Ecotoxicol Environ Saf ; 281: 116663, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964059

RESUMEN

Biological characteristics of pregnant women during early pregnancy make them susceptible to both poor sleep quality and metal/metalloid exposure. However, the effects of metal(loid) exposure on sleep quality in pregnant women remain unknown and unexplored. We aimed to examine the relationship between exposure to a mixture of metal(loid)s and pregnant women's sleep quality during early pregnancy. We recruited 493 pregnant women in the first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected their spot urine samples. All urine specimens were assessed for eight metal(loid)s: arsenic (As), cadmium (Cd), iron (Fe), zinc (Zn), molybdenum (Mo), lead (Pb), selenium (Se), and mercury (Hg). We used the Pittsburgh Sleep Quality Index (PSQI) to assess sleep quality. Linear regression, logistic regression, generalized additive models (GAMs), quantile g-computation, and Bayesian kernel machine regression (BKMR) were applied to investigate the relationships between metal(loid) exposure and sleep quality. The results from single metal(loid) models, quantile g-computation models, and BKMR models consistently suggested that Fe was positively related to women's sleep quality. Moreover, in the quantile g-computation models, As was the most critical contributor to the negative effects of the metal(loid) mixture on sleep quality. In addition, we found significant As by Fe interaction for scores of PSQI and habitual sleep efficiency, Pb by Fe interaction for PSQI and sleep latency, and Hg by Fe interaction for PSQI, suggesting the interactive effects of As and Fe, Pb and Fe, Hg and Fe on sleep quality and specific sleep components. Our study provided the first-hand evidence of the effects of metal(loid) exposure on pregnant women's sleep quality. The underlying mechanisms need to be explored in the future.


Asunto(s)
Calidad del Sueño , Humanos , Femenino , Embarazo , Estudios Transversales , Adulto , China , Contaminantes Ambientales/orina , Contaminantes Ambientales/toxicidad , Selenio/orina , Arsénico/orina , Arsénico/toxicidad , Metales/orina , Metales/toxicidad , Metales Pesados/orina , Metales Pesados/toxicidad , Mercurio/orina , Mercurio/toxicidad , Adulto Joven , Plomo/orina , Plomo/toxicidad , Exposición Materna , Cadmio/orina , Cadmio/toxicidad , Primer Trimestre del Embarazo
7.
J Sep Sci ; 47(14): e2400314, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034893

RESUMEN

In this work, a novel electrospun nanofiber (PAN/TpBD; 2,4,6-triformylphloroglucinol [Tp] and benzidine [BD]; polyacrylonitrile [PAN]) was fabricated via a facile electrospinning method and utilized as adsorbent in thin film microextraction (TFME) of phthalate esters (PAEs) (dimethyl phthalate, diethyl phthalate, diallyl phthalate, dibutyl phthalate, and dioctyl phthalate) in biodegradable plastics. The prepared PAN/TpBD combines the strong stability of nanofibers with increased exposure sites for covalent organic frameworks and enhanced interactions with the target, thus improving the enrichment effect on the target. The extraction efficiency of PAN/TpBD reached above 80%. Based on PAN/TpBD, a TFME-high-performance liquid chromatography method was established, and the experimental parameters were optimized. Under the optimal extraction conditions, the PAEs of this method varied linearly in the range of 10-10 000 µg/L with low detection limits (0.69-2.72 µg/L). The intra-day and inter-day relative standard deviation values of the PAEs were less than 8.04% and 8.73%, respectively. The adsorbent can achieve more than 80% recovery of the five targets after six times reuse. The developed method was successfully applied for the determination of trace PAEs in biodegradable plastics with recoveries ranging from 80.1% to 113.4% and relative standard deviations were less than 9.45%. The as-synthesized PAN/TpBD adsorbent exhibited great potential in PAE analysis.


Asunto(s)
Ésteres , Nanofibras , Ácidos Ftálicos , Nanofibras/química , Ácidos Ftálicos/aislamiento & purificación , Ácidos Ftálicos/química , Ácidos Ftálicos/análisis , Ésteres/química , Ésteres/aislamiento & purificación , Ésteres/análisis , Plásticos/química , Cromatografía Líquida de Alta Presión , Tamaño de la Partícula , Adsorción , Microextracción en Fase Sólida/métodos , Propiedades de Superficie , Resinas Acrílicas
8.
Children (Basel) ; 11(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39062321

RESUMEN

BACKGROUND: There is an abundance of studies explaining the separate impact of female employment and household wealth status in reducing malnutrition. However, our study has unraveled the combined impact of maternal employment and household wealth on undernutrition among children under three in Pakistan. METHODS: Using a sample of 1093 children under three years of age from the Pakistan Demographic and Health Survey 2017-2018, a binary logistic model was employed to gauge factors influencing the children's undernutrition. RESULTS: Our results indicated that children up to a certain age (three years old) with residence in certain regions (Pakistan) and recent episodes of diarrhea had an increased risk of undernutrition. Conversely, secondary and higher maternal education, access to improved water sources, and sanitation facilities lowered the chances of undernutrition in children under three in Pakistan. The interaction between maternal employment and household wealth showed that maternal employment significantly lowered the risk of stunting, being underweight, and wasting among the average, rich, and richest households; however, it did not contribute to child nutrition among the poorer and poor households. Notably, regardless of whether the mother was employed, the wealth status of being rich and richest reduced the risk of stunting, being underweight, and wasting. CONCLUSIONS: In overcoming undernutrition, maternal employment significantly contributed to middle-income households. However, in the richer and richest households, the wealth status played a more crucial role compared to the maternal employment. This indicates that while employment plays a supportive role in household resources, the wealth status is overall more influential in reducing undernutrition.

9.
J Trace Elem Med Biol ; 85: 127496, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032317

RESUMEN

BACKGROUND: The essential mineral elements play important roles in proper growth, development and maintenance of physiological homeostasis of an organism. Women are at greater risk of mineral deficiency during pregnancy. However, the predictors of mineral element levels in pregnant women remain unclear. This study was conducted to determine the urinary levels of calcium (Ca), iron (Fe), copper (Cu), manganese (Mn) and selenium (Se) in women during early pregnancy and to explore the predictors of urinary exposure to each mineral element and high co-exposure to mineral element mixture. METHODS: 298 pregnant women in first trimester were recruited when they attended antenatal care in a hospital in Jinan, Shandong Province, China. We collected their spot urine samples and questionnaire data on their sociodemographic characteristics, lifestyle habits, food and dietary supplement intake, and residential environment. The concentrations of Ca, Fe, Cu, Mn and Se in all urine samples were measured. LASSO regression, multiple linear regression and binary logistic regression were used to analyze the predictors affecting mineral element levels. RESULTS: The geometric means of creatinine-corrected Ca, Fe, Cu, Mn and Se concentrations were 99.37 mg/g, 1.75 µg/g, 8.97 µg/g, 0.16 µg/g and 16.83 µg/g creatinine, respectively. Factors that influenced the concentrations of individual mineral element were as follows: (1) Se and Ca concentrations increased with maternal age; (2) women taking tap water as family drinking water had higher Ca levels and those taking polyunsaturated fatty acids intermittently had higher Cu levels; (3) Fe was adversely related to consumption frequency of barbecued foods; (4) Pregnant women with more frequent consumption of shellfish/shrimp/crab and living near green spaces or parks had higher Mn exposure, and those with higher frequency of meat consumption had lower Mn exposure. In addition, maternal age and the frequency of egg consumption were associated with odds of exposure to a mixture of high Ca, Fe, Cu and Se. CONCLUSIONS: The pregnant women in this study had comparable concentrations of urinary Cu and Se but lower concentrations of Ca, Fe and Mn compared with those in other areas. Predictors of urinary mineral elements included maternal age (Se and Ca), type of domestic drinking water (Ca), consumption frequency of barbecued food (Fe), polyunsaturated fatty acid use (Cu), the presence of urban green spaces or parks near the home and frequency of meat and shellfish/shrimp/crab intake (Mn). Moreover, maternal age and egg consumption frequency were significant predictors of high-level co-exposure to urinary Ca, Fe, Cu and Se.


Asunto(s)
Oligoelementos , Humanos , Femenino , China , Embarazo , Adulto , Oligoelementos/orina , Minerales/orina , Adulto Joven , Calcio/orina , Manganeso/orina , Cobre/orina , Hierro/orina , Selenio/orina
10.
ACS Appl Mater Interfaces ; 16(32): 42406-42414, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078147

RESUMEN

Due to its portable and self-powered characteristics, the construction of Ga2O3-based semiconductor flexible devices that can improve the adaptability in various complex environments have drawn great attention in recent decades. However, conventional Ga2O3-based flexible heterojunctions are based on either amorphous or poor crystalline Ga2O3 materials, which severely limit the performance of the corresponding devices. Here, through lattice-symmetry and energy-band alignment engineering, we construct a high-quality crystalline flexible NiO/ß-Ga2O3 p-n self-powered photodetector. Owing to its suitable energy-band alignment structure, the device shows a high photo-to-dark current ratio (1.71 × 105) and a large detection sensitivity (6.36 × 1014 Jones) under zero bias, which is superior than most Ga2O3 self-powered photodetectors even for those based on rigid substrates. Moreover, the fabricated photodetectors further show excellent mechanical stability and robustness in bending conditions, demonstrating their potential practical applications in flexible optoelectronic devices. These findings provide insights into the manipulation of crystal lattice and energy band engineering in flexible self-powered photodetectors and also offer guideline for designing other Ga2O3-based flexible electronic devices.

11.
ACS Appl Mater Interfaces ; 16(24): 30915-30928, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38847621

RESUMEN

Multidrug-resistant (MDR) bacteria pose serious threats to public health due to the lack of effective and biocompatible drugs to kill MDR bacteria. Photodynamic antibacterial therapy has been widely studied due to its low induction of resistance. However, photosensitizers that can efficiently generate reactive oxygen species (ROS) through both type I and type II mechanisms and that have the capability of multiple modes of action are rarely reported. Addressing this issue, we developed a near-infrared-emitting triphenylamine indole iodoethane (TTII) and its silver(I) self-assembled (TTIIS) aggregation-induced emission (AIE) photosensitizer for multimode bacterial infection therapy. TTII can efficiently produce both Type I ROS •OH and Type II ROS 1O2. Interestingly, the Ag(I)-π interaction contributed in TTIIS efficiency promotion of the generation of 1O2. Moreover, by releasing Ag+, TTIIS enabled photodynamic-Ag(I) dual-mode sterilization. As a result, TTIIS achieved an effective enhancement of antibacterial activity, with a 1-2-fold boost against multidrug-resistant Escherichia coli (MDR E. coli). Both TTII and TTIIS at a concentration as low as 0.55 µg mL-1 can kill more than 98% of methicillin resistant Staphylococcus aureus (MRSA) on MRSA-infected full-thickness defect wounds of a mouse, and both TTII and TTIIS were effective in eliminating the bacteria and promoting wound healing.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Plata , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Plata/química , Plata/farmacología , Animales , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
12.
Mitochondrion ; 78: 101918, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38871013

RESUMEN

Alzheimer's disease (AD) is currently one of the most serious public health concerns in the world. However, the best approach to treat AD has yet to be discovered, implying that we must continue to work hard to find new AD target genes. In this study, we further analysed Gene Expression Omnibus (GEO) data and discovered that the expression of the Mitochondria glutamate carrier SLC25A18 is associated with AD by screening the differentially expressed genes in different regions of the brains of Alzheimer's disease patients. To verify the expression of SLC25A18 during Alzheimer's disease development, we analysed animal models (5×FAD transgenic AD animal model, chemically induced AD animal model, natural ageing animal model), and the results showed that the expression of SLC25A18 was increased in animal models of AD. Further investigation of the different regions found that SLC25A18 expression was elevated in the EC, TeA, and CA3, and expressed in neurons. Next, We found that Aß42 treatment elevated SLC25A18 expression in Neuro 2A cells. Reducing SLC25A18 expression attenuated mitochondrial dysfunction and neuronal apoptosis caused by Aß42. Overexpression of SLC25A18 increased ATP and intracellular superoxide anions but decreased mitochondrial membrane potential. The results indicate that SLC25A18 affects mitochondrial function and neuronal apoptosis, and is related to AD, which makes it a potential target for treating brain dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Sistema de Transporte de Aminoácidos X-AG , Péptidos beta-Amiloides , Apoptosis , Modelos Animales de Enfermedad , Mitocondrias , Proteínas Mitocondriales , Neuronas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
13.
ACS Appl Mater Interfaces ; 16(21): 27075-27086, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752796

RESUMEN

Multifaceted nanoplatforms integrating fluorescence imaging and chemotherapy have garnered acknowledgment for their potential potency in cancer diagnosis and simultaneous in situ therapy. However, some drawbacks remain for traditional organic photosensitizers, such as poor photostability, short excitation wavelength, and shallow penetration depth, which will greatly lower the chemotherapy treatment efficiency. Herein, we present lipid-encapsulated two-photon active aggregation-induced emission (AIE) luminogen and paclitaxel (PTX) nanoparticles (AIE@PTX NPs) with bright red fluorescence emission, excellent photostability, and good biocompatibility. The AIE@PTX NPs exhibit dual functionality as two-photon probes for visualizing blood vessels and tumor structures, achieving penetration depth up to 186 and 120 µm, respectively. Furthermore, the tumor growth of the HeLa-xenograft model can be effectively prohibited after the fluorescence imaging-guided and PTX-induced chemotherapy, which shows great potential in the clinical application of two-photon cell and tumor fluorescence imaging and cancer treatment.


Asunto(s)
Nanopartículas , Paclitaxel , Fotones , Nanomedicina Teranóstica , Paclitaxel/química , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Animales , Células HeLa , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Imagen Óptica , Ratones Desnudos , Ratones Endogámicos BALB C , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología
14.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786667

RESUMEN

The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.

15.
J Mater Chem B ; 12(21): 5024-5038, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38712810

RESUMEN

Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.


Asunto(s)
Disulfuros , Molibdeno , Nanocompuestos , Molibdeno/química , Disulfuros/química , Nanocompuestos/química , Humanos , Técnicas Biosensibles , Animales , Fototerapia/métodos , Sistemas de Liberación de Medicamentos
16.
Small ; : e2401416, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699924

RESUMEN

Along with an ever-deepening understanding of the catalytic principle of natural enzymes, the rational design of high-activity biomimetic nanozymes has become a hot topic in current research. Inspired by the active centers of natural enzymes consisting of catalytic sites and binding pockets, a Cu-doped CoS2 hollow nanocube (Cu/CoS2 HNCs) nanozyme integrating substitution defects and vacancies is developed through a defect engineering strategy. It is shown that the vacancies and substitution defects in the developed Cu/CoS2 HNC nanozymes serve as binding pockets and catalytic sites, respectively. The construction of this key active center and the accelerated electron transfer from the Co/Cu redox cycle significantly improve the substrate affinity and catalytic efficiency of the Cu/CoS2 HNCs nanozymes, which results in the excellent catalytic performance of the Cu/CoS2 HNC nanozymes. Using the superior enzymatic activity of Cu/CoS2 HNCs, a fluorescence detection platform for alkaline phosphatase (ALP) is established, which is a wider detection range and lower limit of detection (LOD) than previous work. This work broadens the family of nanozymes and provide a new idea for the development of novel nanozymes with high enzyme activity, as well as a guideline for the construction of highly sensitive fluorescent sensors.

17.
ACS Appl Mater Interfaces ; 16(19): 24398-24409, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712727

RESUMEN

Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.


Asunto(s)
Imidazoles , Tripsina , Zeolitas , Tripsina/química , Tripsina/metabolismo , Zeolitas/química , Imidazoles/química , Peso Molecular , Resinas Acrílicas/química , Porosidad , Proteínas/química
18.
Anal Chem ; 96(22): 9228-9235, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38779801

RESUMEN

Open-tubular immobilized enzyme microreactors (OT-IMERs) are some of the most widely used enzyme reaction devices due to the advantages of simple preparation and fast sample processing. However, the traditional approaches for OT-IMERs preparation had some defects such as limited enzyme loading amount, susceptibility to complex sample interference, and less stability. Here, we report a strategy for the preparation of highly active and stable OT-IMERs, in which the single-stranded DNA-enzyme composites were immobilized in capillaries and then encapsulated in situ in the capillaries via zeolitic imidazolate frameworks (ZIF-L). The phosphate groups of the DNA adjusted the surface potential of the enzyme to negative values, which could attract cations, such as Zn2+, to promote the formation of ZIF-L for enzyme encapsulation. Using chymotrypsin (ChT) as a model enzyme, the prepared ChT@ZIF-L-IMER has higher activity and better affinity than the free enzyme and ChT-IMER. Moreover, the thermal stability, pH stability, and organic solvent stability of ChT@ZIF-L-IMER were much higher than those of free enzyme and ChT-IMER. Furthermore, the activity of ChT@ZIF-L-IMER was much higher than that of ChT-IMER after ten consecutive reactions. To demonstrate the versatility of this preparation method, we replaced ChT with glucose oxidase (GOx). The stability of GOx@ZIF-L-IMER was also experimentally demonstrated to be superior to that of GOx and GOx-IMER. Finally, ChT@ZIF-L-IMER was used for proteolytic digestion analysis. The results showed that ChT@ZIF-L-IMER had a short digestion time and high digestive efficiency compared with the free enzyme. The present study broadened the synthesis method of OT-IMERs, effectively integrating the advantages of metal-organic frameworks and IMER, and the prepared OT-IMERs significantly improved enzyme stability. All of the results indicated that the IMER prepared by this method had a broad application prospect in capillary electrophoresis-based high-performance enzyme analysis.


Asunto(s)
Quimotripsina , Estabilidad de Enzimas , Enzimas Inmovilizadas , Imidazoles , Zeolitas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Zeolitas/química , Imidazoles/química , Quimotripsina/metabolismo , Quimotripsina/química , Estructuras Metalorgánicas/química , Concentración de Iones de Hidrógeno
19.
Biomaterials ; 309: 122583, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38692148

RESUMEN

The urgent need for antimicrobial agents to combat infections caused by multidrug-resistant bacteria facilitates the exploration of alternative strategies such as photosensitizer (PS)-mediated photoinactivation. However, increasing studies have discovered uncorrelated bactericidal activities among PSs possessing similar photodynamic and pathogen-targeted properties. To optimize the photodynamic therapy (PDT) against infections, we investigated three type-I PSs of D-π-A AIEgens TI, TBI, and TTI. The capacities of reactive oxygen species (ROS) generation of TI, TBI, and TTI did not align with their bactericidal activities. Despite exhibiting the lowest photodynamic efficiency, TI exhibited the highest activities against methicillin-resistant Staphylococcus aureus (MRSA) by impairing the anti-oxidative responses of bacteria. By comparison, TTI, characterized by the strongest ROS production, inactivated intracellular MRSA by potentiating the inflammatory response of macrophages. Unlike TI and TTI, TBI, despite possessing moderate photodynamic activities and inducing ROS accumulation in both MRSA and macrophages, did not exhibit any antibacterial activity. Therefore, relying on the disturbed anti-oxidative metabolism of pathogens or potentiated host immune responses, transient ROS bursts can effectively control bacterial infections. Our study reevaluates the contribution of photodynamic activities of PSs to bacterial elimination and provides new insights into discovering novel antibacterial targets and agents.


Asunto(s)
Macrófagos , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7 , Estrés Oxidativo/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/patología , Infecciones Estafilocócicas/tratamiento farmacológico , Humanos
20.
J Trace Elem Med Biol ; 84: 127444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581744

RESUMEN

BACKGROUND: Toxic heavy metal exposure and insufficiency or excess of essential heavy metals may have negative effects on pregnant women's health and fetal growth. To date, the predictors of pregnant women's heavy metal exposure levels remain unclear and vary with different regions. The study intended to explore potential predictors of exposure to heavy metals individually and high co-exposure to heavy metal mixtures. METHODS: We recruited 298 pregnant women in first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected spot urine samples and questionnaire data on their demographic characteristics, lifestyle habits, consumption of food and dietary supplement, and residential environment. All urine samples were analyzed for seven heavy metals: cobalt (Co), molybdenum (Mo), strontium (Sr), arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg). RESULTS: Factors associated with single heavy metal concentration were as follows: a) urinary As, Sr and Cd increased with women's age respectively; b) pregnant women with higher monthly household income per capita had lower Sr and Mo levels; c) pregnant women with intermittent folic acid supplementation and those not taking tap water as domestic drinking water had lower Sr concentrations; d) Cd was positively linked with consumption frequency of rice; e) Hg was adversely related to consumption frequency of egg and the women who took purified water as domestic drinking water had lower Hg exposure. In addition, pregnant women's age was positively associated with odds of high co-exposure to Co, As, Sr, Mo, Cd and Pb; while those with an educational level of college had lower odds of high exposure to such a metal mixture compared with those whose educational levels were lower than high school. CONCLUSION: Predictors of single urinary heavy metal concentration included pregnant women's age (As, Sr and Cd), monthly household income per capita (Sr and Mo), folic acid supplementation (Sr), rice consumption frequency (Cd), egg consumption frequency (Hg) and the type of domestic drinking water (Sr and Hg). Pregnant women with older age, lower educational level tended to have high co-exposure to Co, As, Sr, Mo, Cd and Pb.


Asunto(s)
Metales Pesados , Humanos , Femenino , China , Embarazo , Adulto , Metales Pesados/orina , Arsénico/orina , Adulto Joven , Cadmio/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA