Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Syst Rev ; 13(1): 108, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627798

BACKGROUND: Leptospirosis, an important zoonotic bacterial disease, commonly affects resource-poor populations and results in significant morbidity and mortality worldwide. The value of antibiotics in leptospirosis remains unclear, as evidenced by the conflicting opinions published. METHODS: We conducted a search in the PubMed, Web of Science, and Cochrane Library databases for studies. These studies included clinical trials and retrospective studies that evaluated the efficacy or safety of antibiotics for leptospirosis treatment. The primary outcomes assessed were defervescence time, mortality rate, and hospital stays. Subgroup analyses were performed based on whether there were cases involving children and whether there were cases of severe jaundice. Safety was defined as the prevalence of adverse events associated with the use of antibiotics. p scores were utilized to rank the efficacy of the antibiotics. RESULTS: There are included 9 randomized controlled trials (RCTs), 1 control trial (CT), and 3 retrospective studies (RS) involving 920 patients and 8 antibiotics. Six antibiotics resulted in significantly shorter defervescence times compared to the control, namely cefotaxime (MD, - 1.88; 95% CI = - 2.60 to - 1.15), azithromycin (MD, - 1.74; 95% CI = - 2.52 to - 0.95), doxycycline (MD, - 1.53; 95% CI = - 2.05 to - 1.00), ceftriaxone (MD, - 1.22; 95% CI = - 1.89 to - 0.55), penicillin (MD, - 1.22; 95% CI = - 1.80 to - 0.64), and penicillin or ampicillin (MD, - 0.08; 95% CI = - 1.01 to - 0.59). The antibiotics were not effective in reducing the mortality and hospital stays. Common adverse reactions to antibiotics included Jarisch-Herxheimer reaction, rash, headache, and digestive reactions (nausea, vomiting, diarrhea, abdominal pain, and others). CONCLUSIONS: Findings recommend that leptospirosis patients be treated with antibiotics, which significantly reduced the leptospirosis defervescence time. Cephalosporins, doxycycline, and penicillin are suggested, and azithromycin may be a suitable alternative for drug-resistant cases. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022354938.


Anti-Bacterial Agents , Leptospirosis , Humans , Anti-Bacterial Agents/adverse effects , Azithromycin/adverse effects , Doxycycline/therapeutic use , Leptospirosis/drug therapy , Leptospirosis/chemically induced , Network Meta-Analysis , Penicillins/therapeutic use
2.
J Neuropathol Exp Neurol ; 82(11): 894-900, 2023 10 20.
Article En | MEDLINE | ID: mdl-37769321

The morbidity and mortality associated with Alzheimer disease (AD), one of the most common neurodegenerative diseases, are increasing each year. Although both amyloid ß and tau proteins are known to be involved in AD pathology, their detailed functions in the pathogenesis of the disease are not fully understood. There is increasing evidence that neuroinflammation contributes to the development and progression of AD, with astrocytes, microglia, and the cytokines and chemokines they secrete acting coordinately in these processes. Signaling involving chemokine (C-C motif) ligand 5 (CCL5) and its main receptor C-C chemokine receptor 5 (CCR5) plays an important role in normal physiologic processes as well as pathologic conditions such as neurodegeneration. In recent years, many studies have shown that the CCL5/CCR5 axis plays a major effect in the pathogenesis of AD, but there are also a few studies that contradict this. In short, the role of CCL5/CCR5 axis in the pathogenesis of AD is still intricate. This review summarizes the structure, distribution, physiologic functions of the CCL5/CCR5 axis, and the progress in understanding its involvement in the pathogenesis of AD.


Alzheimer Disease , Chemokine CCL5 , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Chemokine CCL5/metabolism , Chemokines , Receptors, CCR5/metabolism , Receptors, Chemokine/metabolism
3.
J Transl Med ; 21(1): 106, 2023 02 10.
Article En | MEDLINE | ID: mdl-36765373

The Bacillus Calmette-Guérin (BCG) vaccine was discovered a century ago and has since been clinically applicable. BCG can not only be used for the prevention of tuberculosis, but also has a non-specific protective effect on the human body called trained immunity that is mediated by innate immune cells such as monocytes, macrophages, and natural killer cells. Mechanisms of trained immunity include epigenetic reprogramming, metabolic reprogramming, and long-term protection mediated by hematopoietic stem cells. Trained immunity has so far shown beneficial effects on cancer, viral-infections, autoimmune diseases, and a variety of other diseases, especially bladder cancer, respiratory viruses, and type 1 diabetes. The modulation of the immune response by BCG has led to the development of a variety of recombinant vaccines. Although the specific mechanism of BCG prevention on diseases has not been fully clarified, the potential role of BCG deserves further exploration, which is of great significance for prevention and treatment of diseases.


Mycobacterium bovis , Tuberculosis , Humans , BCG Vaccine/therapeutic use , Trained Immunity , Tuberculosis/prevention & control , Macrophages , Immunity, Innate
4.
J Infect ; 86(4): 338-351, 2023 04.
Article En | MEDLINE | ID: mdl-36796681

OBJECTIVE: The World Health Organization (WHO) recommends multidrug therapy (MDT) with rifampicin, dapsone, and clofazimine for treating leprosy, which is based on very low-quality evidence. Here, we performed a network meta-analysis (NMA) to produce quantitative evidence to strengthen current WHO recommendations. METHOD: All studies were obtained from Embase and PubMed from the date of establishment to October 9, 2021. Data were synthesized with frequentist random-effects network meta-analyses. Outcomes were assessed using odds ratios (ORs), 95% confidence intervals (95% CIs), and P score. RESULTS: Sixty controlled clinical trials and 9256 patients were included. MDT was effective (range of OR: 1.06-1255584.25) for treating leprosy and multibacillary leprosy. Six treatments (Range of OR: 1.199-4.50) were more effective than MDT. Clofazimine (P score=0.9141) and dapsone+rifampicin (P score=0.8785) were effective for treating type 2 leprosy reaction. There were no significant differences in the safety of any of the tested drug regimens. CONCLUSIONS: The WHO MDT is effective for treating leprosy and multibacillary leprosy, but it may not be effective enough. Pefloxacin and ofloxacin may be good adjunct drugs for increasing MDT efficacy. Clofazimine and dapsone+rifampicin can be used in the treatment of a type 2 leprosy reaction. Single-drug regimens are not efficient enough to treat leprosy, multibacillary leprosy, or a type 2 leprosy reaction. AVAILABILITY OF DATA AND MATERIALS: All data generated or analyzed during this study are included in this published article [and its supplementary information files].


Leprosy, Multibacillary , Leprosy , Humans , Leprostatic Agents/adverse effects , Rifampin/adverse effects , Clofazimine/adverse effects , Network Meta-Analysis , Drug Therapy, Combination , Leprosy/drug therapy , Dapsone/adverse effects , Leprosy, Multibacillary/drug therapy
5.
Cells ; 11(17)2022 09 04.
Article En | MEDLINE | ID: mdl-36078166

Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic and has severely affected socio-economic conditions and people's life. The lung is the major target organ infected and (seriously) damaged by SARS-CoV-2, so a comprehensive understanding of the virus and the mechanism of infection are the first choices to overcome COVID-19. Recent studies have demonstrated the enormous value of human organoids as platforms for virological research, making them an ideal tool for researching host-pathogen interactions. In this study, the various existing lung organoids and their identification biomarkers and applications are summarized. At the same time, the seven coronaviruses currently capable of infecting humans are outlined. Finally, a detailed summary of existing studies on SARS-CoV-2 using lung organoids is provided and includes pathogenesis, drug development, and precision treatment. This review highlights the value of lung organoids in studying SARS-CoV-2 infection, bringing hope that research will alleviate COVID-19-associated lung infections.


COVID-19 , Lung , Models, Anatomic , Organoids , Humans , Lung/virology , Organoids/virology , SARS-CoV-2
...