Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Biochem Biophys Res Commun ; 726: 150280, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38909534

Esophageal epithelium is one of the most proliferative and regenerative epithelia in our body, indicating robust stem cell activity. However, the underlying mechanisms regulating the self-renewal and differentiation of esophageal stem cells need to be more elucidated. Here, we identify the role of YAP1 in esophageal stem cells. YAP1 is differentially expressed in the nuclei of esophageal basal cells. Furthermore, the treatment of verteporfin, a YAP1 inhibitor, interfered with esophageal organoid formation. Consistently, YAP1 deletion decreased esophageal organoid formation and the expression of basal genes while increasing the expression of suprabasal genes. Finally, global transcriptomic analysis revealed that YAP1 inhibition induced a significant enrichment of gene sets related to keratinization and cornification, while depleting gene sets related to DNA repair and chromosome maintenance. Our data uncover a novel regulatory mechanism for esophageal stem cells, which could provide a potential strategy for esophageal regenerative medicine.

2.
PLoS One ; 19(5): e0302936, 2024.
Article En | MEDLINE | ID: mdl-38713716

Long-term evolution (LTE) radiofrequency electromagnetic field (RF-EMF) is widely used in communication technologies. Thus, the influence of RF-EMF on biological systems is a major public concern and its physiological effects remain controversial. In our previous study, we showed that continuous exposure of various human cell types to 1.7 GHz LTE RF-EMF at a specific absorption rate (SAR) of 2 W/Kg for 72 h can induce cellular senescence. To understand the precise cellular effects of LTE RF-EMF, we elaborated the 1.7 GHz RF-EMF cell exposure system used in the previous study by replacing the RF signal generator and developing a software-based feedback system to improve the exposure power stability. This refinement of the 1.7 GHz LTE RF-EMF generator facilitated the automatic regulation of RF-EMF exposure, maintaining target power levels within a 3% range and a constant temperature even during the 72-h-exposure period. With the improved experimental setup, we examined the effect of continuous exposure to 1.7 GHz LTE RF-EMF at up to SAR of 8 W/Kg in human adipose tissue-derived stem cells (ASCs), Huh7, HeLa, and rat B103 cells. Surprisingly, the proliferation of all cell types, which displayed different growth rates, did not change significantly compared with that of the unexposed controls. Also, neither DNA damage nor cell cycle perturbation was observed in the 1.7 GHz LTE RF-EMF-exposed cells. However, when the thermal control system was turned off and the subsequent temperature increase induced by the RF-EMF was not controlled during continuous exposure to SAR of 8 W/Kg LTE RF-EMF, cellular proliferation increased by 35.2% at the maximum. These observations strongly suggest that the cellular effects attributed to 1.7 GHz LTE RF-EMF exposure are primarily due to the induced thermal changes rather than the RF-EMF exposure itself.


Cell Proliferation , Electromagnetic Fields , Radio Waves , Humans , Cell Proliferation/radiation effects , Rats , Animals , HeLa Cells , Temperature
3.
Nat Commun ; 14(1): 2017, 2023 04 10.
Article En | MEDLINE | ID: mdl-37037826

Multi-cancer early detection remains a key challenge in cell-free DNA (cfDNA)-based liquid biopsy. Here, we perform cfDNA whole-genome sequencing to generate two test datasets covering 2125 patient samples of 9 cancer types and 1241 normal control samples, and also a reference dataset for background variant filtering based on 20,529 low-depth healthy samples. An external cfDNA dataset consisting of 208 cancer and 214 normal control samples is used for additional evaluation. Accuracy for cancer detection and tissue-of-origin localization is achieved using our algorithm, which incorporates cancer type-specific profiles of mutation distribution and chromatin organization in tumor tissues as model references. Our integrative model detects early-stage cancers, including those of pancreatic origin, with high sensitivity that is comparable to that of late-stage detection. Model interpretation reveals the contribution of cancer type-specific genomic and epigenomic features. Our methodologies may lay the groundwork for accurate cfDNA-based cancer diagnosis, especially at early stages.


Cell-Free Nucleic Acids , Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Epigenome , Neoplasms/diagnosis , Neoplasms/genetics , Genomics/methods , Mutation , Biomarkers, Tumor/genetics
4.
Int J Mol Sci ; 23(13)2022 Jul 02.
Article En | MEDLINE | ID: mdl-35806385

The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid-liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components.


Processing Bodies , Saccharomyces cerevisiae Proteins , Cycloheximide/pharmacology , Cytoplasmic Granules/metabolism , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism
5.
Cells ; 11(14)2022 07 12.
Article En | MEDLINE | ID: mdl-35883622

The spindle position checkpoint (SPOC) of budding yeast delays mitotic exit in response to misaligned spindles to ensure cell survival and the maintenance of genomic stability. The GTPase-activating protein (GAP) complex Bfa1-Bub2, a key SPOC component, inhibits the GTPase Tem1 to induce mitotic arrest in response to DNA and spindle damage, as well as spindle misorientation. However, previous results strongly suggest that Bfa1 exerts a GAP-independent function in blocking mitotic exit in response to misaligned spindles. Thus, the molecular mechanism by which Bfa1 controls mitotic exit in response to misaligned spindles remains unclear. Here, we observed that overexpression of the N-terminal domain of Bfa1 (Bfa1-D16), which lacks GAP activity and cannot localize to the spindle pole body (SPB), induced cell cycle arrest along with hyper-elongation of astral microtubules (aMTs) as Bfa1 overexpression in Δbub2. We found that Δbub2 cells overexpressing Bfa1 or Bfa1-D16 inhibited activation of Mob1, which is responsible for mitotic exit. In anaphase-arrested cells, Bfa1-D16 overexpression inhibited Tem1 binding to the SPB as well as Bfa1 overexpression. Additionally, endogenous levels of Bfa1-D16 showed minor SPOC activity that was not regulated by Kin4. These results suggested that Bfa1-D16 may block mitotic exit through inhibiting Tem1 activity outside of SPBs. Alternatively, Bfa1-D16 dispersed out of SPBs may block Tem1 binding to SPBs by physically interacting with Tem1 as previously reported. Moreover, we observed hyper-elongated aMTs in tem1-3, cdc15-2, and dbf2-2 mutants that induce anaphase arrest and cannot undergo mitotic exit at restrictive temperatures, suggesting that aMT dynamics are closely related to the regulation of mitotic exit. Altogether, these observations suggest that Bfa1 can control the SPOC independent of its GAP activity and SPB localization.


Cell Cycle Proteins , Cytoskeletal Proteins , Saccharomyces cerevisiae Proteins , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Mitosis/genetics , Monomeric GTP-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/metabolism
6.
Int J Mol Sci ; 23(5)2022 Feb 24.
Article En | MEDLINE | ID: mdl-35269643

Membrane-less biomolecular compartmentalization is a core phenomenon involved in many physiological activities that occur ubiquitously in cells. Condensates, such as promyelocytic leukemia (PML) bodies, stress granules, and P-bodies (PBs), have been investigated to understand the process of membrane-less cellular compartmentalization. In budding yeast, PBs dispersed in the cytoplasm of exponentially growing cells rapidly accumulate in response to various stresses such as osmotic stress, glucose deficiency, and heat stress. In addition, cells start to accumulate PBs chronically in post-exponential phases. Specific protein-protein interactions are involved in accelerating PB accumulation in each circumstance, and discovering the regulatory mechanism for each is the key to understanding cellular condensation. Here, we demonstrate that Nst1 of budding yeast Saccharomyces cerevisiae is far more densely associated with PBs in post-exponentially growing phases from the diauxic shift to the stationary phase than during glucose deprivation of exponentially growing cells, while the PB marker Dcp2 exhibits a similar degree of condensation under these conditions. Similar to Edc3, ectopic Nst1 overexpression induces self-condensation and the condensation of other PB components, such as Dcp2 and Dhh1, which exhibit liquid-like properties. Altogether, these results suggest that Nst1 has the intrinsic potential for self-condensation and the condensation of other PB components, specifically in post-exponential phases.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cytoplasm , DEAD-box RNA Helicases , Glucose , Processing Bodies , Saccharomyces cerevisiae Proteins/genetics
7.
Sci Rep ; 11(1): 16125, 2021 08 09.
Article En | MEDLINE | ID: mdl-34373562

There is an unmet need for novel, non-pharmacological therapeutics to treat alopecia. Recent studies have shown the potential biological benefits of non-thermal atmospheric pressure plasma (NTAPP), including wound healing, angiogenesis, and the proliferation of stem cells. We hypothesized that NTAPP might have a stimulatory effect on hair growth or regeneration. We designed an NTAPP-generating apparatus which is applicable to in vitro and in vivo experiments. The human dermal papilla (DP) cells, isolated fresh hair follicles, and mouse back skin were exposed with the NTAPP. Biological outcomes were measured using RNA-sequencing, RT-PCR, Western blots, and immunostaining. The NTAPP treatment increased the expression levels of Wnt/ß-catenin pathway-related genes (AMER3, CCND1, LEF1, and LRG1) and proteins (ß-catenin, p-GSK3ß, and cyclin D1) in human DP cells. In contrast, inhibitors of Wnt/ß-catenin signaling, endo-IWR1 and IWP2, attenuated the levels of cyclin D1, p-GSK3ß, and ß-catenin proteins induced by NTAPP. Furthermore, we observed that NTAPP induced the activation of ß-catenin in DP cells of hair follicles and the mRNA levels of target genes of the ß-catenin signaling pathway (CCND1, LEF1, and TCF4). NTAPP-treated mice exhibited markedly increased anagen induction, hair growth, and the protein levels of ß-catenin, p-GSK3ß, p-AKT, and cyclin D1. NTAPP stimulates hair growth via activation of the Wnt/ß-catenin signaling pathway in DP cells. These findings collectively suggest that NTAPP may be a potentially safe and non-pharmacological therapeutic intervention for alopecia.


Hair Follicle/cytology , Hair Follicle/metabolism , Plasma Gases/pharmacology , Alopecia/metabolism , Alopecia/pathology , Alopecia/therapy , Animals , Cell Proliferation , Cells, Cultured , Female , Gene Expression Profiling , Hair/growth & development , Hair/physiology , Humans , Mice , Mice, Inbred C57BL , Organ Culture Techniques , RNA, Messenger/genetics , RNA, Messenger/metabolism , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
8.
Int J Mol Sci ; 22(11)2021 May 24.
Article En | MEDLINE | ID: mdl-34074016

Cold atmospheric pressure plasma (CAP) and plasma-activated medium (PAM) induce cell death in diverse cancer cells and may function as powerful anti-cancer agents. The main components responsible for the selective anti-cancer effects of CAP and PAM remain elusive. CAP or PAM induces selective cell death in hepatocellular carcinoma cell lines Hep3B and Huh7 containing populations with cancer stem cell markers. Here, we investigated the major component(s) of CAP and PAM for mediating the selective anti-proliferative effect on Hep3B and Huh7 cells. The anti-proliferative effect of CAP was mediated through the medium; however, the reactive oxygen species scavenger N-acetyl cysteine did not suppress PAM-induced cell death. Neither high concentrations of nitrite or nitrite/nitrate nor a low concentration of H2O2 present in the PAM containing sodium pyruvate affected the viability of Hep3B and Huh7 cells. Inhibitors of singlet oxygen, superoxide anions, and nitric oxide retained the capacity of PAM to induce anti-cancer effects. The anti-cancer effect was largely blocked in the PAM prepared by placing an aluminum metal mesh, but not a dielectric PVC mesh, between the plasma source and the medium. Hence, singlet oxygen, hydrogen peroxide, nitric oxide, and nitrite/nitrate are not the main factors responsible for PAM-mediated selective death in Hep3B and Huh7 cells. Other factors, such as charged particles including various ions in CAP and PAM, may induce selective anti-cancer effects in certain cancer cells.


Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Death/drug effects , Free Radicals/metabolism , Liver Neoplasms/drug therapy , Nitrates/pharmacology , Nitrites/pharmacology , Plasma Gases/pharmacology , Acetylcysteine/pharmacology , Aluminum/pharmacology , Atmospheric Pressure , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Hydrogen Peroxide/pharmacology , Liver Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Nitric Oxide/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism
9.
Int J Mol Sci ; 22(8)2021 Apr 12.
Article En | MEDLINE | ID: mdl-33921230

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


Carcinoma, Hepatocellular/drug therapy , Culture Media/radiation effects , Liver Neoplasms/drug therapy , Plasma Gases , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Line/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Culture Media/pharmacology , Doxorubicin/pharmacology , Humans , Liver/drug effects , Liver/pathology , Liver Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/radiation effects
10.
Sci Rep ; 10(1): 9238, 2020 06 08.
Article En | MEDLINE | ID: mdl-32514068

Due to the rapid development of mobile phone technology, we are continuously exposed to 1.7 GHz LTE radio frequency electromagnetic fields (RF-EMFs), but their biological effects have not been clarified. Here, we investigated the non-thermal cellular effects of these RF-EMFs on human cells, including human adipose tissue-derived stem cells (ASCs), Huh7 and Hep3B liver cancer stem cells (CSCs), HeLa and SH-SY5Y cancer cells, and normal fibroblast IMR-90 cells. When continuously exposed to 1.7 GHz LTE RF-EMF for 72 h at 1 and 2 SAR, cell proliferation was consistently decreased in all the human cells. The anti-proliferative effect was higher at 2 SAR than 1 SAR and was less severe in ASCs. The exposure to RF-EMF for 72 h at 1 and 2 SAR did not induce DNA double strand breaks or apoptotic cell death, but did trigger a slight delay in the G1 to S cell cycle transition. Cell senescence was also clearly observed in ASC and Huh7 cells exposed to RF-EMF at 2 SAR for 72 h. Intracellular ROS increased in these cells and the treatment with an ROS scavenger recapitulated the anti-proliferative effect of RF-EMF. These observations strongly suggest that 1.7 GHz LTE RF-EMF decrease proliferation and increase senescence by increasing intracellular ROS in human cells.


Cell Proliferation/radiation effects , Cellular Senescence/radiation effects , Radio Waves , Reactive Oxygen Species/metabolism , Cell Line , DNA Breaks, Double-Stranded/radiation effects , Electromagnetic Fields , G1 Phase Cell Cycle Checkpoints/radiation effects , Humans , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects
11.
Free Radic Biol Med ; 148: 108-122, 2020 02 20.
Article En | MEDLINE | ID: mdl-31883975

Non-thermal atmospheric pressure plasma (NTAPP) has been reported to induce wound healing, activation of immune cells, and proliferation of mesoderm-derived adult stem cells in human. However, the mechanism by which NTAPP activates these physiological effects is poorly understood. Here, we examined whole genome expression profiles of adipose tissue-derived stem cells (ASCs), the proliferation of which is induced by NTAPP. NTAPP upregulated the expression of genes for cytokine and growth factor, but downregulated genes in apoptotic pathways. When ASCs were treated with NTAPP in the presence of a nitric oxide (NO) scavenger, the expression of various cytokines and growth factors decreased, suggesting that NO is primarily responsible for the enhanced cytokine and growth factor expression induced by NTAPP. Increased histone deacetyl transferase 1 (HDAC1) and decreased acetylated histone 3 were detected in NTAPP-treated ASCs. Similarly, ASCs pre-treated with HDAC, DNA methylation, or histone methylation inhibitors had reduced expression of cytokines and growth factors after NTAPP treatment. Taken together, these results strongly suggest that NTAPP induces epigenetic modifications that activate the expression of cytokines and growth factors, explaining how NTAPP acts as an efficient tool in regenerative medicine to stimulate stem cell proliferation, to activate immune cells, and to recover wounds.


Plasma Gases , Adipose Tissue , Adult , Cell Proliferation , Cytokines/genetics , Epigenesis, Genetic , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mesoderm , Stem Cells
12.
Pharmaceutics ; 11(10)2019 Sep 27.
Article En | MEDLINE | ID: mdl-31569746

The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ hydrogel-forming/NO-releasing powder dressing (NO/GP), which is a powder during storage and forms a hydrogel when applied to wounds, as a novel NO-releasing formulation to treat infected wounds. An NO/GP fine powder (51.5 µm) was fabricated by blending and micronizing S-nitrosoglutathione (GSNO), alginate, pectin, and polyethylene glycol (PEG). NO/GP remained stable for more than four months when stored at 4 or 37 °C. When applied to wounds, NO/GP absorbed wound fluid and immediately converted to a hydrogel. Additionally, wound fluid triggered a NO release from NO/GP for more than 18 h. The rheological properties of hydrogel-transformed NO/GP indicated that NO/GP possesses similar adhesive properties to marketed products (Vaseline). NO/GP resulted in a 6-log reduction in colony forming units (CFUs) of methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, which are representative drug-resistant gram-positive and -negative bacteria, respectively. The promotion of wound healing by NO/GP was demonstrated in mice with full-thickness wounds challenged with MRSA and P. aeruginosa. Thus, NO/GP is a promising formulation for the treatment of infected wounds.

13.
Free Radic Biol Med ; 134: 374-384, 2019 04.
Article En | MEDLINE | ID: mdl-30685405

Adult stem cells are capable of self-renewal and differentiation into specific cell types in tissues and have high potential for stem cell therapy. Mesenchymal and hematopoietic stem cells are easily attainable from the human body and have become applicable tools for adult stem cell therapy. However, there are still technical barriers for the application of mesenchymal and hematopoietic stem cells for therapy, such as the small number of cell populations, high risk of contamination, and loss of their stemness properties in vitro. In our previous study, we showed that non-thermal atmospheric pressure plasma (NTAPP) promoted the proliferation of adipose tissue-derived stem cells (ASCs) by 1.6-fold on average, while maintaining their stemness. Here, we examined the feasibility of NTAPP as a tool to activate the proliferation of mesenchymal and hematopoietic stem cells in vitro without affecting their stem cell characteristics. NTAPP increased the proliferation of bone marrow-derived stem cells (BM-MSCs) and hematopoietic stem cells (HSCs) by 1.8- and 2-fold, respectively, when compared to that of untreated cells. As observed in ASCs, NTAPP exposure also activated the expression of stem cell-specific surface markers, CD44 and CD105, by 5-fold in BM-MSCs, when compared to that in unexposed control cells in a low glucose medium with a low concentration of basic fibroblast growth factor (b-FGF). In addition, NTAPP exposure highly augmented the mRNA expression of well-known pluripotent genes for stemness, such as Oct4, Sox2, and Nanog in ASCs and BM-MSCs when compared to that in unexposed control cells. When cell cycle progression was examined, the G1-S shift was accelerated, and expression of PCNA was increased in NTAPP-exposed ASCs when compared to that in untreated control cells, suggesting that NTAPP activated G1-S transition. Taken together, these results demonstrated that NTAPP activated the proliferation of various mesodermal-derived human adult stem cells by accelerating the G1-S transition while maintaining their pluripotency and stemness, strongly suggesting that NTAPP can be an efficient tool for expanding the population of various adult stem cells in vitro for medical applications.


Adipose Tissue/cytology , Adult Stem Cells/cytology , Cell Proliferation/drug effects , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Plasma Gases/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adult , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Atmospheric Pressure , Biomarkers/metabolism , Cell Differentiation , Cells, Cultured , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism
14.
PLoS One ; 13(7): e0199753, 2018.
Article En | MEDLINE | ID: mdl-30011321

Previously, we showed that exposure of human normal and cancer cells to a 6 mT, 60 Hz gradient electromagnetic field (EMF) induced genotoxicity. Here, we investigated the cellular effects of a uniform EMF. Single or repetitive exposure to a 6 mT, 60 Hz uniform EMF neither induced DNA damage nor affected cell viability in HeLa and primary IMR-90 fibroblasts. However, continuous exposure of these cells to an EMF promoted cell proliferation. Cell viability increased 24.4% for HeLa and 15.2% for IMR-90 cells after a total 168 h exposure by subculture. This increase in cell proliferation was directly correlated with EMF strength and exposure time. When further incubated without EMF, cell proliferation slowed down to that of unexposed cells, suggesting that the proliferative effect is reversible. The expression of cell cycle markers increased in cells continuously exposed to an EMF as expected, but the distribution of cells in each stage of the cell cycle did not change. Notably, intracellular reactive oxygen species levels decreased and phosphorylation of Akt and Erk1/2 increased in cells exposed to an EMF, suggesting that reduced levels of intracellular reactive oxygen species play a role in increased proliferation. These results demonstrate that EMF uniformity at an extremely low frequency (ELF) is an important factor in the cellular effects of ELF-EMF.


Cell Proliferation/radiation effects , Electromagnetic Fields , Oxidative Stress/radiation effects , Cell Line , HeLa Cells , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
15.
Mol Cells ; 41(5): 436-443, 2018 May 31.
Article En | MEDLINE | ID: mdl-29754473

The actin cytoskeleton plays a key role in the entry of mitosis as well as in cytokinesis. In a previous study, we showed that actin disruption delays mitotic entry at G2/M by sustained activation of extracellular signal-related kinase 1/2 (ERK1/2) in primary cells but not in transformed cancer cell lines. Here, we examined the mechanism of cell cycle delay at G2/M by actin dysfunction in IMR-90 normal human fibroblasts. We observed that de-polymerization of actin with cytochalasin D (CD) constitutively activated ribosomal S6 kinase (RSK) and induced inhibitory phosphorylation of Cdc2 (Tyr 15) in IMR-90 cells. In the presence of an actin defect in IMR-90 cells, activating phosphorylation of Wee1 kinase (Ser 642) and inhibitory phosphorylation of Cdc25C (Ser 216) was also maintained. However, when kinase-dead RSK (DN-RSK) was over-expressed, we observed sustained activation of ERK1/2, but no delay in the G2/M transition, demonstrating that RSK functions downstream of ERK in cell cycle delay by actin dysfunction. In DN-RSK overexpressing IMR-90 cells treated with CD, phosphorylation of Cdc25C (Ser 216) was blocked and phosphorylation of Cdc2 (Tyr 15) was decreased, but the phosphorylation of Wee1 (Ser 642) was maintained, demonstrating that RSK directly controls phosphorylation of Cdc25C (Ser 216), but not the activity of Wee1. These results strongly suggest that actin dysfunction in primary cells activates ERK1/2 to inhibit Cdc2, delaying the cell cycle at G2/M by activating downstream RSK, which phosphorylates and blocks Cdc25C, and by directly activating Wee1.


Actins/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/cytology , G2 Phase Cell Cycle Checkpoints , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/ultrastructure , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cytochalasin D/pharmacology , Enzyme Activation , Fibroblasts/metabolism , Humans , MAP Kinase Signaling System , Nuclear Proteins/metabolism , Phosphorylation , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/metabolism , cdc25 Phosphatases/antagonists & inhibitors , cdc25 Phosphatases/metabolism
16.
J Cell Biochem ; 119(2): 2381-2395, 2018 02.
Article En | MEDLINE | ID: mdl-28885720

Stathmin/oncoprotein18 regulates microtubule dynamics and participates in mitotic entry and exit. We isolated stathmin as a physically interacting partner of KIFC1, a minus-end-directed kinesin functioning in bipolar spindle formation and maintenance. We found that stathmin depletion leads to multipolar spindle formation in IMR-90 normal human fibroblasts. Stathmin-depleted IMR-90 cells showed early mitotic delay but managed to undergo chromosome segregation by forming multiple poles or pseudo-bipoles. Consistent with these observations, lagging chromosomes, and micronuclei were elevated in stathmin-depleted IMR-90 cells, demonstrating that stathmin is essential for maintaining genomic stability during mitosis in human cells. Genomic instability induced by stathmin depletion led to premature senescence without any indication of cell death in normal IMR-90 cells. Double knock-down of both stathmin and p53 also did not induce cell death in IMR-90 cells, while the stathmin knock-down triggered apoptosis in p53-proficient human lung adenocarcinoma cells. Our results suggest that stathmin is essential in bipolar spindle formation to maintain genomic stability during mitosis, and the depletion of stathmin prevents the initiation of chromosome instability by inducing senescence in human normal fibroblasts.


Fibroblasts/cytology , Gene Knockdown Techniques , Genomic Instability , Kinesins/metabolism , Stathmin/genetics , Stathmin/metabolism , A549 Cells , Cell Line , Cellular Senescence , Fibroblasts/metabolism , HeLa Cells , Humans , Microtubule-Organizing Center/metabolism , Mitosis , Spindle Poles/genetics , Spindle Poles/metabolism
17.
J Radiat Res ; 59(1): 18-26, 2018 Jan 01.
Article En | MEDLINE | ID: mdl-29040655

Alzheimer's disease (AD) is a neurodegenerative disease leading to progressive loss of memory and other cognitive functions. One of the well-known pathological markers of AD is the accumulation of amyloid-beta protein (Aß), and its plaques, in the brain. Recent studies using Tg-5XFAD mice as a model of AD have reported that exposure to radiofrequency electromagnetic fields (RF-EMF) from cellular phones reduced Aß plaques in the brain and showed beneficial effects on AD. In this study, we examined whether exposure to 1950 MHz RF-EMF affects Aß processing in neural cells. We exposed HT22 mouse hippocampal neuronal cells and SH-SY5Y human neuroblastoma cells to RF-EMF (SAR 6 W/kg) for 2 h per day for 3 days, and analyzed the mRNA and protein expression of the key genes related to Aß processing. When exposed to RF-EMF, mRNA levels of APP, BACE1, ADAM10 and PSEN1 were decreased in HT22, but the mRNA level of APP was not changed in SH-SY5Y cells. The protein expression of APP and BACE1, as well as the secreted Aß peptide, was not significantly different between RF-EMF-exposed 7w-PSML, HT22 and SH-SY5Y cells and the unexposed controls. These observations suggest that RF-EMF exposure may not have a significant physiological effect on Aß processing of neural cells in the short term. However, considering that we only exposed HT22 and SH-SY5Y cells to RF-EMF for 2 h per day for 3 days, we cannot exclude the possibility that 1950 MHz RF-EMF induces physiological change in Aß processing with long-term and continuous exposure.


Amyloid beta-Peptides/metabolism , Electromagnetic Fields , Hippocampus/cytology , Neuroblastoma/metabolism , Neurons/metabolism , Protein Processing, Post-Translational/radiation effects , Radio Waves , Animals , Cell Line , Gene Expression Regulation/radiation effects , Humans , Mice , Neurons/radiation effects
18.
Free Radic Biol Med ; 115: 43-56, 2018 02 01.
Article En | MEDLINE | ID: mdl-29138018

Vestibular schwannoma (VS), although a benign intracranial tumor, causes morbidities by brainstem compression. Since chemotherapy is not very effective in most Nf2-negative schwannomas, surgical removal or radiation therapy is required. However, depending on the size and site of the tumor, these approaches may cause loss of auditory or vestibular functions, and severely decrease the post-surgical wellbeing. Here, we examined the feasibility of cold atmospheric pressure plasma (CAP) as an intra-operative adjuvant treatment for VS after surgery. Cell death was efficiently induced in both human HEI-193 and mouse SC4 VS cell lines upon exposure to CAP for seven minutes. Interestingly, both apoptosis and necroptosis were simultaneously induced by CAP treatment, and cell death was not completely inhibited by pan-caspase and receptor-interacting serine/threonine-protein kinase 1 (RIK1) inhibitors. Upon CAP exposure, cell death phenotype was similarly observed in patient-derived primary VS cells and tumor mass. In addition, CAP exposure after the surgical removal of primary tumor efficiently inhibited tumor recurrence in SC4-grafted mouse models. Collectively, these results strongly suggest that CAP should be developed as an efficient adjuvant treatment for VS after surgery to eliminate the possible remnant tumor cells, and to minimize the surgical area in the brain for post-surgical wellbeing.


Adjuvants, Anesthesia , Atmospheric Pressure , Brain Neoplasms/therapy , Brain Stem/physiology , Cell Death/radiation effects , Electric Stimulation Therapy , Neuroma, Acoustic/therapy , Animals , Brain Neoplasms/surgery , Brain Stem/surgery , Cell Line, Tumor , Disease Models, Animal , Feasibility Studies , Humans , Intraoperative Care , Mice , Neuroma, Acoustic/surgery , Neurosurgical Procedures , Recurrence , Signal Transduction
19.
J Texture Stud ; 48(6): 571-585, 2017 12.
Article En | MEDLINE | ID: mdl-28419504

The objectives of this study were to develop and compare sensory characteristics of beverages and soups thickened with different concentrations of a xanthan gum-based thickener, and to examine, using rheological measurement, whether the viscosity of the thickened liquids conformed to the recommendations of the National Dysphagia Diet (NDD) Task Force. Beverages tested included water, apple juice, orange juice, soymilk, and Yakult. The thickening agent was added to samples at concentrations of 1, 2, or 3%. Addition of the thickening agent had a significant effect on the appearance, texture, and starchy flavor, which were evaluated by descriptive sensory evaluation. The reference standards of viscosity used in sensory descriptive analysis could be useful to practitioners who have to make dysphagia diets and need to learn to make them properly. In rheological measurement, viscosity of thickened liquids in stationary state would be perceived as higher compared to that while swallowing, because of the shear thinning property. This could lead to noncompliance of the medical advice or malnutrition. It is necessary to determine optimal proportion of xanthan gum-based thickener or uncover alternatives, which have shear thinning properties lower than those of xanthan gum, for the acceptance of dysphagia patients. There was no pudding-like viscosity as classified by NDD, when prepared following instructions. Future studies should include higher concentrations of thickener to find out the concentration of the thickener resulting in pudding-like viscosity as recommended by NDD. PRACTICAL APPLICATIONS: When a manufacturer modifies or develops a xanthan gum-based thickener, findings from this study can be utilized to understand sensory and rheological characteristics of thickened liquid. For practitioners who have to make dysphagia diets, the reference standards of viscosity used in sensory descriptive analysis could be helpful for deciding the viscosity level of thickened liquids based only on visual evaluation. This study suggests manufacturers should provide clear direction for viscosity range and thickener concentration. Medical doctors should pay close attention to the risk of aspiration when prescribing pudding-like viscosity. Dietitians should understand the variability in achieving different levels of viscosity and should educate preparers who are responsible for making dysphagia meals.


Beverages/analysis , Food Additives/chemistry , Food Quality , Polysaccharides, Bacterial/chemistry , Rheology/methods , Aged , Deglutition , Female , Food Additives/analysis , Humans , Middle Aged , Polysaccharides, Bacterial/analysis , Taste , Viscosity
20.
Sci Rep ; 6: 39298, 2016 12 19.
Article En | MEDLINE | ID: mdl-27991548

Non-thermal atmospheric pressure plasma (NTAPP) is defined as a partially ionized gas with electrically charged particles at atmospheric pressure. Our study showed that exposure to NTAPP generated in a helium-based dielectric barrier discharge (DBD) device increased the proliferation of adipose tissue-derived stem cells (ASCs) by 1.57-fold on an average, compared with untreated cells at 72 h after initial NTAPP exposure. NTAPP-exposed ASCs maintained their stemness, capability to differentiate into adipocytes but did not show cellular senescence. Therefore, we suggested that NTAPP can be used to increase the proliferation of ASCs without affecting their stem cell properties. When ASCs were exposed to NTAPP in the presence of a nitric oxide (NO) scavenger, the proliferation-enhancing effect of NTAPP was not obvious. Meanwhile, the proliferation of NTAPP-exposed ASCs was not much changed in the presence of scavengers for reactive oxygen species (ROS). Also, Akt, ERK1/2, and NF-κB were activated in ASCs after NTAPP exposure. These results demonstrated that NO rather than ROS is responsible for the enhanced proliferation of ASCs following NTAPP exposure. Taken together, this study suggests that NTAPP would be an efficient tool for use in the medical application of ASCs both in vitro and in vivo.


Cell Proliferation/drug effects , Nitric Oxide/metabolism , Plasma Gases/metabolism , Stem Cells/drug effects , Stem Cells/physiology , Adipose Tissue/cytology , Humans , Signal Transduction
...