Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 173
1.
Org Lett ; 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38864512

We report a novel and environmentally friendly method for the ipso-bromination of arylboronic acids by exploiting the oxone/KBr system. We discovered that CuBr can catalyze the reaction and increase the yield from 63 to 97%. We believe that CuBr might catalyze the in situ generation of HOBr from oxone/KBr. The mild reaction condition permits tolerance of a diverse array of functional groups with exclusive regio- and chemoselectivity and allows low-cost large-scale reaction without explosion risk.

2.
Front Neurol ; 15: 1363053, 2024.
Article En | MEDLINE | ID: mdl-38651100

Purpose: To explore the relationship between obstructive sleep apnea (OSA) and hypoperfusion during ultra-early acute cerebral infarction. Patients and methods: Data were retrospectively collected from patients admitted to our hospital with acute cerebral infarction between January 2020 and January 2022, who underwent comprehensive whole-brain computed tomography perfusion imaging and angiography examinations within 6 h of onset. The F-stroke software automatically assessed and obtained relevant data (Tmax). The patients underwent an initial screening for sleep apnea. Based on their Apnea-Hypopnea Index (AHI), patients were categorized into an AHI ≤15 (n = 22) or AHI >15 (n = 25) group. The pairwise difference of the time-to-maximum of the residue function (Tmax) > 6 s volume was compared, and the correlation between AHI, mean pulse oxygen saturation (SpO2), oxygen desaturation index (ODI), percentage of time with oxygen saturation < 90% (T90%), and the Tmax >6 s volume was analyzed. Results: The Tmax >6 s volume in the AHI > 15 group was significantly larger than that in the AHI ≤ 15 group [109 (62-157) vs. 59 (21-106) mL, p = 0.013]. Spearman's correlation analysis revealed Tmax >6 s volume was significantly correlated with AHI, mean SpO2, ODI, and T90% in the AHI > 15 group, however, no significant correlations were observed in the AHI ≤ 15 group. Controlling for the site of occlusion and Multiphase CT angiography (mCTA) score, AHI (ß = 0.919, p < 0.001), mean SpO2 (ß = -0.460, p = 0.031), ODI (ß = 0.467, p = 0.032), and T90% (ß =0.478, p = 0.026) remained associated with early hypoperfusion in the AHI > 15 group. Conclusion: In patients with acute cerebral infarction and AHI > 15, AHI, mean SpO2, ODI and T90% were associated with early hypoperfusion. However, no such relationship exists among patients with AHI ≤ 15.

3.
J Hazard Mater ; 469: 134082, 2024 May 05.
Article En | MEDLINE | ID: mdl-38522209

Antimony (Sb) pollution seriously endangers ecological environment and human health. Microbial induced mineralization can effectively convert metal ions into more stable and less soluble crystalline minerals by extracellular polymeric substance (EPS). In this study, an efficient Sb-resistant Rhodotorula mucilaginosa (R. mucilaginosa) was screened, which can resist 41 mM Sb(III) and directly transform Sb(III) into Sb2O3 microcrystals by EPS. The removal efficiency of R. mucilaginosa for 22 mM Sb(III) reached 70% by converting Sb(III) to Sb2O3. The components of supernatants as well as the effects of supernatants and pH on Sb(III) mineralization verified that inducible and non-inducible extracellular protein/polysaccharide biomacromolecules play important roles in the morphologies and sizes control of Sb2O3 formed by R. mucilaginosa respectively. Sb2O3 microcrystals with different morphologies and sizes can be prepared by the regulation of inducible and non-inducible extracellular biomacromolecules secreted by R. mucilaginosa. This is the first time to identify that R. mucilaginosa can remove Sb(III) by transforming Sb(III) into Sb2O3 microcrystals under the control of EPS. This study contributes to our understanding for Sb(III) biomineralization mechanisms and provides strategies for the remediation of Sb-contaminated environment.


Extracellular Polymeric Substance Matrix , Rhodotorula , Humans , Metals/pharmacology , Antimony/chemistry , Rhodotorula/chemistry
4.
Appl Microbiol Biotechnol ; 108(1): 235, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38407657

Methylmercury formation is mainly driven by microbial-mediated process. The mechanism of microbial mercury methylation has become a crucial research topic for understanding methylation in the environment. Pioneering studies of microbial mercury methylation are focusing on functional strain isolation, microbial community composition characterization, and mechanism elucidation in various environments. Therefore, the functional genes of microbial mercury methylation, global isolations of Hg methylation strains, and their methylation potential were systematically analyzed, and methylators in typical environments were extensively reviewed. The main drivers (key physicochemical factors and microbiota) of microbial mercury methylation were summarized and discussed. Though significant progress on the mechanism of the Hg microbial methylation has been explored in recent decade, it is still limited in several aspects, including (1) molecular biology techniques for identifying methylators; (2) characterization methods for mercury methylation potential; and (3) complex environmental properties (environmental factors, complex communities, etc.). Accordingly, strategies for studying the Hg microbial methylation mechanism were proposed. These strategies include the following: (1) the development of new molecular biology methods to characterize methylation potential; (2) treating the environment as a micro-ecosystem and studying them from a holistic perspective to clearly understand mercury methylation; (3) a more reasonable and sensitive inhibition test needs to be considered. KEY POINTS: • Global Hg microbial methylation is phylogenetically and functionally discussed. • The main drivers of microbial methylation are compared in various condition. • Future study of Hg microbial methylation is proposed.


Mercury , Microbiota , Protein Processing, Post-Translational , Methylation
5.
Environ Res ; 247: 118156, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38199475

Viruses manipulate bacterial community composition and impact wastewater treatment efficiency. Some viruses pose threats to the environment and human populations through infection. Improving the efficiency of wastewater treatment and ensuring the health of the effluent and receptor pools requires an understanding of how viral communities assemble and interact with hosts in wastewater treatment plants (WWTPs). We used metagenomic analysis to study the distribution, assembly mechanism, and sensitive hosts for the viral communities in raw water, anaerobic tanks, and returned activated sludge units of a large-scale industrial park WWTP. Uroviricota (53.42% ± 0.14%) and Nucleocytoviricota (26.1% ± 0.19%) were dominant in all units. Viral community composition significantly differed between units, as measured by ß diversity (P = 0.005). Compared to raw water, the relative viral abundance decreased by 29.8% in the anaerobic tank but increased by 9.9% in the activated sludge. Viral community assembly in raw water and anaerobic tanks was predominantly driven by deterministic processes (MST <0.5) versus stochastic processes (MST >0.5) in the activated sludge, indicating that differences in diffusion limits may fundamentally alter the assembly mechanisms of viral communities between the solid and liquid-phase environments. Acidobacteria was identified as the sensitive host contributing to viral abundance, exhibiting strong interactions and a mutual dependence (degree = 59). These results demonstrate the occurrence and prevalence of viruses in WWTPs, their different assembly mechanism, and sensitive hosts. These observations require further study of the mechanisms of viral community succession, ecological function, and roles in the successive wastewater treatment units.


Sewage , Water Purification , Humans , Sewage/microbiology , Wastewater , Bacteria/genetics , Water Purification/methods , Water
6.
Biomed Pharmacother ; 166: 115412, 2023 Oct.
Article En | MEDLINE | ID: mdl-37660652

Acute lung injury (ALI) is an inflammation-mediated respiratory disease with a high mortality rate. Medications with anti-inflammatory small molecules have been demonstrated in phase I and II clinical trials to considerably reduce the ALI mortality. In this study, two series of lansiumamide analogues were designed, synthesized, and evaluated for anti-inflammatory activity for ALI treatment. We found that compound 8n exhibited the best anti-inflammatory activity through inhibiting LPS-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) in Raw264.7 cells and activating the Nrf2/HO-1 pathway. Furthermore, we discovered in a LPS-induced ALI mice model that compound 8n significantly reduced the infiltration of inflammatory cells into lung tissue to achieve the effect of protecting lung tissues and improving ALI. Additionally, our mice model study revealed that compound 8n had a good expectorant effect. These results consistently support that lansiumamide analogue 8n represents a new class of anti-inflammatory agents with potential as a lead compound for further development into a therapeutic drug for ALI treatment.


Acute Lung Injury , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Inflammation , Cytokines , Disease Models, Animal
7.
Environ Res ; 237(Pt 2): 117025, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37657604

Three Gorges Reservoir (TGR) water fluctuation creates high water level (HWL) and low water level (LWL) condition in TGR aquatic ecosystem. HWL fluies significant nutrients, mainly introducing carbon and nitrogen into the ecosystem. The nitrogen input is a concern for water quality management of TGR since the possible eutrophication caused by nitrogen spike. Sediment denitrification is widely recognized as the dominant nitrogen removal process in freshwater ecosystem. Therefore, the response of TGR sediments microbiome to the input nitrogen flucatution is crucial for both nitrogen balance and the eutrophication status of the ecosystem. Using high throughout sequencing of 16S rRNA gene and the predicted denitrification enzyme, and qualitative PCR of denitrification functional genes, we investigated how TGR sediments denitrification microbiome respond to the input nitrogen flux during two seasonal water fluctuation events. Concomitant to expected input carbon and nitrogen, we observed distinct microbial community structure and denitrification microbiota in HWL and LWL, and also in seasonal sampling events. Sediments pH, total nitrogen and nitrate were the significant impact factors in shaping the microbial community structure. Important denitrification microbiota (e.g., Saprospiraceae, Gemmatimonadaceae, Pseudomonas) are the main taxa of the microbial community and also showed water level and seasonal variation. The relative abundance of denitrification enzyme (nar, nir, nor, nos) and function genes (nirS, nirK, nosZ) were higher in LWL than HWL. Denitrification enzyme were significantly (p < 0.05) correlated with the nitrate concentration. In addition, the relative abundance of denitrification enzyme and function genes increased during the transition from 2014 HWL to 2015 LWL. Results suggested that TGR sediments denitrification is nitrate concentration dependent. The denitrification microbiome is initially inhibited due to high nitrate input, then they developed denitrification ability in response to high nitrate concentration.

8.
Molecules ; 28(17)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37687108

On the basis of the three-component synthetic methodology developed by us, a total of twenty-six pyrazole compounds bearing aryl OCF3 were designed and synthesized. Their chemical structures were characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry. These compounds were evaluated systematically for antifungal activities in vitro against six plant pathogenic fungi by the mycelium growth rate method. Most of the compounds showed some activity against each of the fungi at 100 µg/mL. Compounds 1t and 1v exhibited higher activity against all the tested fungi, and 1v displayed the highest activity against F. graminearum with an EC50 value of 0.0530 µM, which was comparable with commercial pyraclostrobin. Structure-activity relationship analysis showed that, with respect to the R1 substituent, the straight chain or cycloalkyl ring moiety was a key structural moiety for the activity, and the R2 substituent on the pyrazole ring could have significant effects on the activity. Simple and readily available pyrazoles with potent antifungal activity were obtained, which are ready for further elaboration to serve as a pharmacophore in new potential antifungal agents.


Antifungal Agents , Pyrazoles , Antifungal Agents/pharmacology , Pyrazoles/pharmacology , Mass Spectrometry , Mycelium
9.
Sci Total Environ ; 905: 167397, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37758143

Municipal solid waste (MSW) landfills are significant sources of antibiotics. However, the effects of antibiotics on MSW decomposition process and methanogenesis during solid waste decomposition remain insufficiently characterized. This study investigated the effects of environmentally relevant concentrations (ERCs) of antibiotics (200 µg/kg for each antibiotic) on MSW decomposition and methanogenesis in bioreactors treated with and without eight antibiotics (three tetracyclines, three sulfonamides, and two macrolides). The key phases of MSW decomposition, namely the aerobic, anaerobic acid, and methanogenic phases, were determined by analyzing the key physiochemical parameters of the leachate, including pH, chemical oxygen demand, and biochemical oxygen demand. We assessed the bacterial and archaeal compositions, along with the abundance of the gene encoding the alpha subunit of methyl-coenzyme M reductase (mcrA), during MSW decomposition using high throughput 16S ribosomal RNA (rRNA) gene sequencing and quantitative polymerase chain reactions, respectively. Our results revealed that antibiotics significantly altered the compositions of bacteria and methanogens, leading to decreased mcrA abundance and methanogenesis. Specifically, antibiotics inhibited cellulose-degrading bacteria (Firmicutes) and archaea (E2) in the anaerobic acid phase and hydrolytic bacteria (Proteobacteria) in the methanogenic phase, resulting in lower degradation of biodegradable matter than that of the biodegradation without antibiotics treatment. However, the typical MSW decomposition process indicated by the key decomposition phases was successfully separated in both bioreactors, suggesting that antibiotics did not affect overall MSW decomposition process development or the associated individual decomposition phases establishment. These findings suggest that antibiotics at ERCs may inhibit methanogenesis during MSW decomposition, thereby providing fundamental information for methane management and climate change studies.


Refuse Disposal , Solid Waste , Solid Waste/analysis , Anti-Bacterial Agents/metabolism , Bacteria/metabolism , Archaea/metabolism , Firmicutes , Bioreactors/microbiology , Methane/metabolism , Waste Disposal Facilities , Refuse Disposal/methods
10.
Heliyon ; 9(8): e18521, 2023 Aug.
Article En | MEDLINE | ID: mdl-37554813

In this study, a novel heteropolysaccharide (ASPA80-1) with an average molecular weight of 5.48 × 104 Da was isolated and structurally elucidated from custard apple pulp (Annona squamosa) through DEAE-cellulose, Sephadex G-100 and Sephacryl S-300 HR chromatography and spectral analysis. ASPA80-1 is a water-soluble polysaccharide and it is a polymer consisting of predominant amounts of (1 â†’ 3)-linked-L-arabinose (Ara) residues, small amounts of (1 â†’ 6)-linked-D-galactose (Gal), (1 â†’ 3,5)-linked-L-arabinose (Ara) residues and terminal linked-L-arabinose (Ara) residues, trace amount of (1 â†’ 4)-linked-D-glucose (Glc) residues and (1 â†’ 2)-linked-L-rhamnose (Rham) residues. ASPA80-1 showed significant effect on antigen-presenting cells (APCs) activation. On the one hand, ASPA80-1 activated RAW264.7 macrophage cells by inducing morphology change, enhancing phagocytic ability, increasing nitric oxide (NO) secretion and promoting expression of major histocompatibility complex class II (MHC II) and cluster of differentiation 86 (CD 86). On the other hand, ASPA80-1 promoted the maturation of dendritic cells (DCs) by inducing longer dendrites, decreasing phagocytic ability and increasing MHC II and CD86 expression. Furthermore, mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways were activated after the intervention of ASPA80-1 on RAW264.7 cells or DCs. Thus, the novel heteropolysaccharide ASPA80-1 has the potential to be used as an immunoenhancing component in functional foods.

12.
J Hazard Mater ; 457: 131676, 2023 09 05.
Article En | MEDLINE | ID: mdl-37263024

Microplastics (MPs) are emerging pollutants. Landfills store up to 42% of worldwide plastic waste and serve as an important source of MPs. However, the study of MPs distribution and the plastic biodegradation potential in landfills is limited. In this study, the distribution of abundance, size, morphology and polymer type of MPs and plastics biodegradation species in refuse samples along landfill depths were extensively investigated within a large-scale landfill in Shenzhen, China. In addition, plastics biodegradation enzymes were evaluated in seven Chinese large-scale landfills leachate. MPs distribution pattern was investigated in all refuse samples. The abundance of MPs in refuse samples varied between 81 and 133 items/g. The size of MPs in all samples varied between 0.03 and 5 mm, and the average sizes were 1.2 mm ± 0.1 mm. The main morphology and polymer type were fragments and cellophane, respectively. Landfill depth was significantly negatively correlated with the relative abundance of MPs size 1-5 mm (p < 0.05) and was positively correlated with the relative abundance of MPs size < 0.2 mm (p < 0.05), suggesting that plastics were broken down during municipal solid waste decomposition. The multiple regression on matrices analysis further showed the landfill depths and plastic morphology significantly impact the MPs distribution. The strains, Lysinibacillus massiliensis (with relative abundance of 1.8%) for low-density polyethylene and polystyrene biodegradation, and Pseudomonas stutzeri (0.1%) for low density polythene and polypropylene biodegradation, were detected on the plastic surface with high relative abundance. Furthermore, 75 plastic degradation species and their associated 31 enzymes (breakdown 24 plastics) were discovered in seven landfills leachate samples.


Plastics , Water Pollutants, Chemical , Plastics/analysis , Microplastics , Polyethylene/analysis , China , Water Pollutants, Chemical/analysis , Waste Disposal Facilities , Biodegradation, Environmental , Environmental Monitoring
13.
Int J Biol Macromol ; 245: 125513, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37353116

Previous studies demonstrated that ASP-3 was a novel calcium-binding protein from Arca subcrenata that effectively inhibited the proliferation of HepG2 cells. To further study the antitumor activity and mechanism of ASP-3, the cytotoxic effects of recombinant ASP-3 were evaluated in HepG2 cells. The results demonstrated that ASP-3 inhibited the proliferation of HepG2 cells by competitively binding to the EGF binding pocket of EGFR and inhibiting the JAK-STAT, RAS-RAF-MEK-ERK, and PI3K-Akt-mTOR signaling pathways mediated by EGFR. ASP-3 significantly inhibited tumor growth in a HepG2 cell subcutaneous xenograft nude mouse model, and its (25 mg/kg and 75 mg/kg) tumor inhibition rates were 46.92 % and 60.28 %, respectively. Furthermore, the crystal structure of ASP-3 was resolved at 1.4 Å. ASP-3 formed as a stable dimer and folded as an EF-Hand structure. ASP-3 stably bound to domain I and domain III of the EGFR extracellular region by using molecular docking and molecular dynamics simulation analysis. Compared with the endogenous ligand EGF, ASP-3 displayed a stronger interaction with EGFR. These experimental results indicated that recombinant ASP-3 possessed an effective anti-hepatoma effect. So, it might be a potential molecule for liver cancer therapy.


Bivalvia , Calcium-Binding Proteins , Carcinoma, Hepatocellular , Liver Neoplasms , Recombinant Proteins , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Binding Sites , Bivalvia/chemistry , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/pharmacology , Calcium-Binding Proteins/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Competitive Bidding , Crystallography, X-Ray , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Escherichia coli , Hep G2 Cells , Hydrogen Bonding , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Molecular Dynamics Simulation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction , Molecular Docking Simulation
14.
Int J Biol Macromol ; 244: 125406, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37327918

In recent years, natural resources have proven to be tremendous sources of glycoproteins. As biological macromolecules, glycoproteins are essential to the growth and development of organisms, and have attracted increasing attention around the world. This review summarized and discussed the development of glycoproteins from natural resources, including isolation methods, purification processes, structural features and biological activities. Generally, the vast majority of glycoproteins can be isolated by hot water extraction followed by purification through gel filtration chromatography. Combined with component analysis, the physicochemical properties of glycoproteins are studied by using several spectroscopic techniques such as ultraviolet-visible (UV-visible), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR). Moreover, natural glycoproteins possess various remarkable biological activities, including anti-tumor, anti-oxidant, anti-coagulant and anti-microbial activities. The content of this review will provide a theoretical basis for the research on related glycoproteins and give a perspective on the use of these medical resources.


Antioxidants , Glycoproteins , Spectroscopy, Fourier Transform Infrared , Magnetic Resonance Spectroscopy
15.
Genes (Basel) ; 14(5)2023 05 12.
Article En | MEDLINE | ID: mdl-37239430

The ability of various pests and diseases to adapt to a single plant resistance gene over time leads to loss of resistance in transgenic rice. Therefore, introduction of different pest and disease resistance genes is critical for successful cultivation of transgenic rice strains with broad-spectrum resistance to multiple pathogens. Here, we produced resistance rice lines with multiple, stacked resistance genes by stacking breeding and comprehensively evaluated their resistance to Chilo suppressalis (striped rice stemborer), Magnaporthe oryzae (rice blast), and Nilaparvata lugens (brown planthopper) in a pesticide-free environment. CRY1C and CRY2A are exogenous genes from Bacillus thuringiensis. Pib, Pikm, and Bph29 are natural genes in rice. CH121TJH was introduced into CRY 1C, Pib, Pikm, and Bph29. CH891TJH and R205XTJH were introduced into CRY 2A, Pib, Pikm, and Bph29. Compared with those observed in their recurrent parents, CH121TJH significantly increased the mortality of borers. The other two lines CH891TJH and R205XTJH are the same result. Three lines introduction of Pib and Pikm significantly reduced the area of rice blast lesions, and introduction of Bph29 significantly reduced seedling mortality from N. lugens. Introduction of the exogenous genes had relatively few effects on agronomic and yield traits of the original parents. These findings suggest that stacking of rice resistance genes through molecular marker-assisted backcross breeding can confer broad spectrum and multiple resistance in differently genetic backgrounds.


Hemiptera , Moths , Animals , Plants, Genetically Modified/genetics , Plant Breeding , Moths/genetics , Hemiptera/genetics
16.
Sci Total Environ ; 888: 163823, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37201818

Plastisphere plays crucial role in global carbon and nitrogen cycles and microplastics formation. Global Municipal Solid Waste (MSW) landfills contain 42 % plastic waste, therefore representing one of the most significant plastispheres. MSW landfills are also the third largest anthropogenic methane sources and the important anthropogenic N2O source. Surprisingly, knowledge of microbiota and the associated microbial carbon and nitrogen cycles of landfill plastispheres is very limited. In this study, we characterized and compared the organic chemicals profile, bacterial community structure and metabolic pathway on plastisphere and the surrounding refuse in a large-scale landfill using GC/MS and 16S rRNA genes high-throughput sequencing, respectively. Landfill plastisphere and the surrounding refuse differed in organic chemicals composition. However, abundant phthalate-like chemicals were determined in both environments, implying the plastics additives leaching. Bacterial colonizing on the plastics surface had significantly higher richness than that in the surrounding refuse. Plastic surface and the surrounding refuse had distinct bacterial community composition. Genera of Sporosarcina, Oceanobacillus and Pelagibacterium were detected on the plastic surface with high abundance, while Ignatzschineria, Paenalcaligenes and Oblitimonas were rich in the surrounding refuse. Typical plastics biodegradation genus Bacillus, Pseudomonas and Paenibacillus were detected in both environments. However, Pseudomonas was dominant in plastic surface (up to 88.73 %), whereas Bacillus was rich in the surrounding refuse (up to 45.19 %). For the carbon and nitrogen cycle, plastisphere was predicted to had significant (P < 0.05) higher functional genes involved in carbon metabolism and nitrification, indicating more activated carbon and nitrogen microbial activity on the plastics surface. Additionally, pH was the main driver in shaping the bacterial community composition on plastic surface. These results indicate that landfill plastispheres serve as unique niches for microbial community habitation and function on microbial carbon and nitrogen cycles. These observations invite further study of the landfill plastispheres ecological effect.


Bacillus , Refuse Disposal , Solid Waste , Refuse Disposal/methods , Plastics , RNA, Ribosomal, 16S , Waste Disposal Facilities , Bacteria , Methane
17.
Hum Pathol ; 138: 41-48, 2023 08.
Article En | MEDLINE | ID: mdl-37245628

Cellular myofibromas/myopericytomas harboring recurring SRF fusions are recently characterized as rare and diagnostically challenging entities, which can mimic myogenic sarcomas. These tumors belong to the pericytic/perivascular myoid tumor family, which comprises a group of genetically heterogenous and sometimes morphologically overlapping entities. In this series, we describe 3 cases of SRF-rearranged cellular myofibromas/perivascular myoid tumors with a smooth muscle-like phenotype in children. The children ranged from 7 to 16 years of age, and all presented with a painless mass in the extremities, 2 of which were deep-seated. Histologically, the tumors demonstrated a smooth muscle-like morphology and immunophenotype with mild atypia and low-level mitotic activity. Prominent dense collagen deposition and coarse calcification was observed in 2 tumors. RNA sequencing revealed SRF fusions in all cases, with each tumor showing a different 3' partner gene, RELA, NFKBIE, and NCOA3. Of these, NCOA3 has not been reported previously, and this expands the molecular spectrum by identifying a novel fusion partner for SRF. Given that histological features can be worrisome for a myogenic sarcoma, wider awareness of this emerging tumor is valuable to avoid potential misclassification.


Myofibroma , Sarcoma , Soft Tissue Neoplasms , Humans , Extremities , Myofibroma/genetics , Neoplasm Recurrence, Local , Sarcoma/genetics , Soft Tissue Neoplasms/genetics
18.
J Nanobiotechnology ; 21(1): 160, 2023 May 20.
Article En | MEDLINE | ID: mdl-37210530

BACKGROUND: Plant-derived exosomes-like nanovesicles (PDENs) have been found to be advantageous in disease treatment and drug delivery, but research on their biogenesis, compositional analysis, and key marker proteins is still in its infancy, which limits the standardized production of PDENs. Efficient preparation of PDENs continues to be a major challenge. RESULTS: Novel PDENs-based chemotherapeutic immune modulators, Catharanthus roseus (L.) Don leaves-derived exosome-like nanovesicles (CLDENs) were isolated from apoplastic fluid. CLDENs were membrane structured vesicles with a particle size of 75.51 ± 10.19 nm and a surface charge of -21.8 mV. CLDENs exhibited excellent stability, tolerating multiple enzymatic digestions, resisting extreme pH environments, and remaining stable in the gastrointestinal simulating fluid. Biodistribution experiments showed that CLDENs could be internalized by immune cells, and targeted at immune organs after intraperitoneal injection. The lipidomic analysis revealed CLDENs' special lipid composition, which contained 36.5% ether-phospholipids. Differential proteomics supported the origin of CLDENs in multivesicular bodies, and six marker proteins of CLDENs were identified for the first time. 60 ~ 240 µg/ml of CLDENs promoted the polarization and phagocytosis of macrophages as well as lymphocyte proliferation in vitro. Administration of 20 mg/kg and 60 mg/kg of CLDENs alleviated white blood cell reduction and bone marrow cell cycle arrest in immunosuppressive mice induced by cyclophosphamide. CLDENs strongly stimulated the secretion of TNF-α, activated NF-κB signal pathway and increased the expression of the hematopoietic function-related transcription factor PU.1 both in vitro and in vivo. To ensure a steady supply of CLDENs, plant cell culture systems of C. roseus were established to provide CLDENs-like nanovesicles which had similar physical properties and biological activities. Gram-level nanovesicles were successfully obtained from the culture medium, and the yield was three times as high as the original. CONCLUSIONS: Our research supports the use of CLDENs as a nano-biomaterial with excellent stability and biocompatibility, and for post-chemotherapy immune adjuvant therapy applications.


Catharanthus , Exosomes , Animals , Mice , NF-kappa B/metabolism , Catharanthus/metabolism , Tumor Necrosis Factor-alpha/metabolism , Exosomes/metabolism , Tissue Distribution
20.
Sci Total Environ ; 880: 163278, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37019240

Antibiotic resistance genes (ARGs) and pathogens are emerging environmental pollutants that pose a threat to human health and ecosystem. Industrial park wastewater treatment plants (WWTPs) treat large amounts of comprehensive wastewater derived from industrial production and park human activity, which is possible a source of ARGs and pathogens. Therefore, this study investigated the occurrence and prevalence of ARGs, ARGs hosts and pathogens and assesses the ARGs health risk in the biological treatment process in a large-sale industrial park WWTP using metagenomic analysis and omics-based framework, respectively. Results show that the major ARG subtypes are multidrug resistance genes (MDRGs), macB, tetA(58), evgS, novA, msbA and bcrA and the ARGs main hosts were genus Acidovorax, Pseudomonas, Mesorhizobium. In particular, all determined ARGs genus level hosts are pathogens. The total removal percentage of ARGs, MDRGs and pathogens were 12.77 %, 12.96 % and 25.71 % respectively, suggesting that the present treatment could not efficiently remove these pollutants. The relative abundance of ARGs, MDRGs and pathogens varied along biological treatment process that ARGs and MDRGs were enriched in activated sludge and pathogens were enriched in both secondary sedimentation tank and activated sludge. Among 980 known ARGs, 23 ARGs (e.g., ermB, gadX and tetM) were assigned into risk Rank I with characters of enrichment in the human-associated environment, gene mobility and pathogenicity. The results indicate that industrial park WWTPs might serve as an important source of ARGs, MDRGs, and pathogens. These observations invite further study of the origination, development, dissemination and risk assessment of industrial park WWTPs ARGs and pathogens.


Genes, Bacterial , Sewage , Humans , Anti-Bacterial Agents/pharmacology , Prevalence , Ecosystem , Drug Resistance, Microbial/genetics
...