Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722330

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Apoptosis , Cell Proliferation , Homeodomain Proteins , Wnt Signaling Pathway , Humans , Male , Apoptosis/genetics , Cell Proliferation/genetics , Wnt Signaling Pathway/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Spermatogonia/metabolism , Spermatogonia/cytology , Spermatogenesis/genetics , Adult Germline Stem Cells/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Testis/metabolism , Testis/cytology , Thiolester Hydrolases
2.
Article En | MEDLINE | ID: mdl-38652101

In this work, doping 3-amino-propyl triethoxysilane (APTES) into a perovskite precursor is proven to be an effective strategy, which can passivate crystal defects, control the crystallization rate, and improve the morphology. APTES can form oligomers through hydrolysis and a condensation reaction, thus blocking the invasion of external water molecules. In addition, the lone pair electrons on the N atom in the amino group of APTES form a coordination bond with perovskite by sharing the empty 6p orbital on Pb2+, which can effectively passivate the defects of the film and realize a highly uniform and dense perovskite film with preferential crystal growth orientation. The film exhibits high (110) crystal plane orientation and long carrier lifetime and mobility, which improves the performance of flexible perovskite solar cells. Using this approach, the champion device presents an optimal power conversion efficiency of 19.84% with much promoted air stability. Moreover, the efficiency of flexible devices does not decrease after maximum power point irradiation for 360 s.

3.
Materials (Basel) ; 17(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612088

The multifunctional development in the field of face masks and the growing demand for scalable manufacturing have become increasingly prominent. In this study, we utilized high-vacuum magnetron sputtering technology to deposit a 5 nm ultra-thin Ag-Cu film on non-woven fabric and fabricated ultra-thin Ag-Cu film face masks. The antibacterial rates against Escherichia coli and Staphylococcus aureus were 99.996% and 99.978%, respectively, while the antiviral activity against influenza A virus H1N1 was 99.02%. Furthermore, the mask's ability to monitor respiratory system diseases was achieved through color change (from brownish-yellow to grey-white). The low cost and scalability potential of ultra-thin silver-copper film masks offer new possibilities for practical applications of multifunctional masks.

4.
Water Res ; 252: 121184, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38377699

Singlet oxygen (1O2) is extensively employed in the fields of chemical, biomedical and environmental. However, it is still a challenge to produce high- concentration 1O2 by dioxygen activation. Herein, a system of carbon-supported rare-earth oxide nanocluster and single atom catalysts (named as RE2O3/RE-C, RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) with similar morphology, structure, and physicochemical characteristic are constructed to activate dissolved oxygen (DO) to enhance 1O2 production. The catalytic activity trends and mechanisms are revealed experimentally and are also proven by theoretical analyses and calculations. The 1O2 generation activity trend is Gd2O3/Gd-C>Er2O3/Er-C>Sm2O3/Sm-C>pristine carbon (C). More than 95.0% of common antibiotics (ciprofloxacin, ofloxacin, norfloxacin and carbamazepine) can be removed in 60 min by Gd2O3/Gd-C. Density functional theory calculations indicate that Gd2O3 nanoclusters and Gd single atoms exhibit the moderate adsorption energy of ·O2- to enhance 1O2 production. This study offers a universal strategy to enhance 1O2 production in dioxygen activation for future application and reveals the natural essence of basic mechanisms of 1O2 production via rare-earth oxide nanoclusters and rare-earth single atoms.


Metals, Rare Earth , Singlet Oxygen , Oxides/chemistry , Oxygen , Anti-Bacterial Agents , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry
5.
ACS Appl Mater Interfaces ; 16(4): 4618-4627, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38232233

The ternary strategy has been widely applied and recognized to be a valid strategy to enhance the organic photovoltaics' (OPVs) performance. Here, a new fused-ring electron acceptor, BTP-PIO, is designed and synthesized, whose ending groups were replaced by a phthalimide-based group (2-butylcyclopenta[f]isoindole-1,3,5,7(2H,6H)-tetraone) from traditional 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile. The phthalimide-based ending groups endow BTP-PIO with the highest lowest unoccupied molecular orbital (LUMO) level and wider band gap than those of Y6. The ternary device based on PM6:Y6 with BTP-PIO as a guest electron acceptor achieved an elevated open-circuit voltage (VOC) of 0.848 V, a short-circuit current density (JSC) of 27.31 mA cm-2, and a fill factor (FF) of 73.9%, generating a remarkable power conversion efficiency (PCE) of 17.10%, which is superior to the PM6:Y6 binary device of 16.08%. The ternary device exhibited improved charge transfer, suppressed carrier recombination, and lower energy loss. BTP-PIO exhibited a good miscibility with Y6, and an alloy phase between BTP-PIO and Y6 was formed in the ternary bulk heterojunction, leading to better phase separation and molecular packing. This research reveals that ending group modification of Y6 derivatives is a feasible way to produce highly efficient ternary devices.

6.
Biomaterials ; 304: 122407, 2024 01.
Article En | MEDLINE | ID: mdl-38048744

Periodontitis is a chronic disease caused by bacteria (e.g. Porphyromonas gingivalis, P.gingivalis) that currently lacks effective non-invasive treatment options. Sonodynamic therapy (SDT) is an emerging non-invasive antimicrobial therapeutic strategy. Since ultrasonic tooth cleaning is widely used in dental treatments, SDT has significant potential for the facile implementation of treat periodontitis. However, hypoxia in periodontitis severely limits the effectiveness of traditional sonosensitizers. To address this issue, we have developed a new sonosensitizer termed as TPP-TeV, which combines the traditional sonosensitizer tetraphenylporphyrin (TPP) with a new photosensitizer telluroviologen (TeV). Under ultrasound radiation, TPP-TeV can produce numerous cationic free radicals (TPP-TeV•), which subsequently generate ROS free radicals (O2•-, •OH) efficiently via electron transfer mechanism, resulting in the effective killing of anaerobic P.gingivalis both in vivo and in vitro. As a result, the dental environment is improved, and the inhibition rate of alveolar bone loss reaches 80 %. The introduction of tellurium into the viologen molecule induces changes in its reduction potential, resulting in increased rigidity of the molecule. This modification systematically reduces the biotoxicity of our novel sonosensitizer by 75 % at 50 µM based on bacterial experiments. These promising findings could potentially establish new options for sonodynamic therapy (SDT) in periodontitis clinical treatments.


Neoplasms , Porphyrins , Humans , Porphyrins/therapeutic use , Porphyrins/pharmacology , Photosensitizing Agents/therapeutic use , Free Radicals , Cell Line, Tumor , Reactive Oxygen Species , Neoplasms/therapy
7.
Molecules ; 28(23)2023 Nov 26.
Article En | MEDLINE | ID: mdl-38067517

Lithium metal is considered a promising anode material for lithium secondary batteries by virtue of its ultra-high theoretical specific capacity, low redox potential, and low density, while the application of lithium is still challenging due to its high activity. Lithium metal easily reacts with the electrolyte during the cycling process, resulting in the continuous rupture and reconstruction of the formed SEI layer, which reduces the cycling reversibility. On the other hand, repeated lithium plating/stripping processes can lead to uncontrolled growth of lithium dendrites and a series of safety issues caused by short-circuiting of the battery. Currently, modification of the battery separator layer is a good strategy to inhibit lithium dendrite growth, which can improve the Coulombic efficiency in the cycle. This paper reviews the preparation, behavior, and mechanism of the modified coatings using metals, metal oxides, nitrides, and other materials on the separator to inhibit the formation of lithium dendrites and achieve better stable electrochemical cycles. Finally, further strategies to inhibit lithium dendrite growth are proposed.

8.
Transl Cancer Res ; 12(10): 2572-2581, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37969373

Background: Colorectal cancer (CRC) is the fifth most fatal cancer with a low probability of surgery and limited treatment options, especially in metastatic CRC. In this study, we investigated whether a mouse model of metastatic CRC mimicked tumor progression and evaluated the effect of 5-fluorouracil (5-FU) treatment. Methods: The CT26 mouse derived CRC cancer cell line was inoculated into mice, and the tumor bearing mice were divided into two groups: the experimental group and the control group. Micro-computed tomography (CT) and in vivo fluorescence were used to monitor the progression of metastatic CRC. A lung metastasis mouse model was employed to determine the effects of 5-FU on metastasis. Results: Bioluminescence imaging (BLI) and computed tomography (CT), as non-invasive methods, can continuously monitor the growth of tumors in vivo. Thus, imaging techniques can be used to qualitatively and quantitatively evaluate tumor growth indicators. 5-FU injected intravenously reduced the viability of metastatic CRC cells and resulted in prolonged survival compared to the control group. Moreover, the 5-FU-treated group had significantly reduced fluorescence of the CT26 cells in the lung. The results observed by BLI and CT are consistent with the tissue morphology and structure presented in pathological examination. Conclusions: In summary, a successful mouse model of CRC metastasis for clinical application has been established.

9.
Cancer Res ; 83(24): 4063-4079, 2023 12 15.
Article En | MEDLINE | ID: mdl-37738413

Excessive fructose intake is associated with the occurrence, progression, and poor prognosis of various tumors. A better understanding of the mechanisms underlying the functions of fructose in cancer could facilitate the development of better treatment and prevention strategies. In this study, we investigated the functional association between fructose utilization and pancreatic ductal adenocarcinoma (PDAC) progression. Fructose could be taken up and metabolized by PDAC cells and provided an adaptive survival mechanism for PDAC cells under glucose-deficient conditions. GLUT5-mediated fructose metabolism maintained the survival, proliferation, and invasion capacities of PDAC cells in vivo and in vitro. Fructose metabolism not only provided ATP and biomass to PDAC cells but also conferred metabolic plasticity to the cells, making them more adaptable to the tumor microenvironment. Mechanistically, fructose activated the AMP-activated protein kinase (AMPK)-mTORC1 signaling pathway to inhibit glucose deficiency-induced autophagic cell death. Moreover, the fructose-specific transporter GLUT5 was highly expressed in PDAC tissues and was an independent marker of disease progression in patients with PDAC. These findings provide mechanistic insights into the role of fructose in promoting PDAC progression and offer potential strategies for targeting metabolism to treat PDAC. SIGNIFICANCE: Fructose activates AMPK-mTORC1 signaling to inhibit autophagy-mediated cell death in pancreatic cancer cells caused by glucose deficiency, facilitating metabolic adaptation to the tumor microenvironment and supporting tumor growth.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , AMP-Activated Protein Kinases/metabolism , Fructose , Cell Proliferation , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Autophagy , Glucose , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
10.
Asian J Androl ; 25(6): 680-686, 2023 11 01.
Article En | MEDLINE | ID: mdl-37695217

This study aimed to investigate the impact of the coronavirus disease 2019 (COVID-19) pandemic on erectile function in Chinese patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). A retrospective study was conducted on 657 CP/CPPS patients who visited The Third Xiangya Hospital of Central South University (Changsha, China) from November 2018 to November 2022. Patients were divided into two groups based on the timeline before and after the COVID-19 outbreak in China. The severity of CP/CPPS, penile erection status, anxiety, and depression was evaluated using the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI), International Index of Erectile Function-5 (IIEF-5), Generalized Anxiety Disorder-7 (GAD-7), and Patient Health Questionnaire-9 (PHQ-9) scales, respectively. Compared with patients before the COVID-19 outbreak, more CP/CPPS patients developed severe erectile dysfunction (ED) due to depression and anxiety caused by the pandemic. After developing moderate-to-severe ED, mild and moderate-to-severe CP/CPPS patients exhibited more apparent symptoms of anxiety and depression ( P < 0.001 and P = 0.001, respectively), forming a vicious cycle. The COVID-19 pandemic has adversely affected the psychological status of CP/CPPS patients, exacerbating their clinical symptoms and complicating ED. The exacerbation of clinical symptoms further worsens the anxiety and depression status of patients, forming a vicious cycle. During the COVID-19 pandemic, paying more attention to the mental health of CP/CPPS patients, strengthening psychological interventions, and achieving better treatment outcomes are necessary.


COVID-19 , Erectile Dysfunction , Prostatitis , Male , Humans , Erectile Dysfunction/etiology , Pandemics , Penile Erection , Prostatitis/complications , Retrospective Studies , East Asian People , COVID-19/complications , Chronic Disease , Pelvic Pain/complications
11.
J Exp Clin Cancer Res ; 42(1): 184, 2023 Jul 28.
Article En | MEDLINE | ID: mdl-37507736

BACKGROUND: Fructose is a very common sugar found in natural foods, while current studies demonstrate that high fructose intake is significantly associated with increased risk of multiple cancers and more aggressive tumor behavior, but the relevant mechanisms are not fully understood. METHODS: Tumor-grafting experiments and in vitro angiogenesis assays were conducted to detect the effect of fructose and the conditioned medium of fructose-cultured tumor cells on biological function of vascular endothelial cells (VECs) and angiogenesis. 448 colorectal cancer specimens were utilized to analyze the relationship between Glut5 expression levels in VECs and tumor cells and microvascular density (MVD). RESULTS: We found that fructose can be metabolized by VECs and activate the Akt and Src signaling pathways, thereby enhancing the proliferation, migration, and tube-forming abilities of VECs and thereby promoting angiogenesis. Moreover, fructose can also improve the expression of vascular endothelial growth factor (VEGF) by upregulating the production of reactive oxygen species (ROS) in colorectal cancer cells, thus indirectly enhancing the biological function of VECs. Furthermore, this pro-angiogenic effect of fructose metabolism has also been well validated in clinical colorectal cancer tissues and mouse models. Fructose contributes to angiogenesis in mouse subcutaneous tumor grafts, and MVD is positively correlated with Glut5 expression levels of both endothelial cells and tumor cells of human colorectal cancer specimens. CONCLUSIONS: These findings establish the direct role and mechanism by which fructose promotes tumor progression through increased angiogenesis, and provide reliable evidence for a better understanding of tumor metabolic reprogramming.


Colorectal Neoplasms , Endothelial Cells , Fructose , Glucose Transporter Type 5 , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A , Animals , Humans , Mice , Colorectal Neoplasms/metabolism , Endothelial Cells/metabolism , Fructose/metabolism , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors/metabolism , Glucose Transporter Type 5/metabolism
12.
Front Cell Infect Microbiol ; 13: 1189081, 2023.
Article En | MEDLINE | ID: mdl-37465760

Objective: To explore whether type III prostatitis is related to bacterial infection by detecting the composition and function of microorganisms in expressed prostatic secretion (EPS) of patients with chronic prostatitis (CP) and healthy people. Methods: According to the inclusion and exclusion criteria, 57 subjects were included in our study, divided into the healthy group, type II prostatitis group, and type III prostatitis group. 16s rRNA sequencing technique was used to detect and analyze the microbial composition of EPS in each group. Additionally, the metagenomics sequencing technique was used to further explore the function of different bacteria in the type III prostatitis group. Data analysis was performed by bioinformatics software, and the results were statistically significant when P<0.05. Results: Many microorganisms exist in EPS in both CP patients and healthy populations. However, the relative abundance of Pseudomonas, Haemophilus, Sneathia, Allobaculum, and Enterococcus in CP patients (including type II and III) were significantly different. Still, the relative abundance of different bacteria in type II prostatitis patients was much higher than in type III. The metagenomics sequencing results for the type III prostatitis group showed that the different bacteria had certain biological functions. Conclusion: Based on our sequencing results and previous studies, we suggest that type III prostatitis may also be caused by bacterial infection.


Bacterial Infections , Prostatitis , Male , Humans , Prostatitis/complications , Prostatitis/diagnosis , RNA, Ribosomal, 16S/genetics , Chronic Disease , Bacterial Infections/complications , Bacterial Infections/microbiology , Bacteria/genetics
13.
Materials (Basel) ; 16(10)2023 May 16.
Article En | MEDLINE | ID: mdl-37241391

Hydrophobic thin films have gained significant attention due to their broad applications in self-cleaning, anti-corrosion, anti-icing, medicine, oil-water separation, and other fields. The target hydrophobic materials can be deposited onto various surfaces thanks to the scalable and highly reproducible nature of magnetron sputtering, which is comprehensively overviewed in this review. While alternative preparation methods have been extensively analyzed, a systematic understanding of hydrophobic thin films fabricated using magnetron sputtering deposition is still absent. After outlining the fundamental mechanism of hydrophobicity, this review briefly summarizes three types of sputtering-deposited thin films that originate from oxides, polytetrafluoroethylene (PTFE), and diamond-like carbon (DLC), respectively, primarily focusing on the recent advances in their preparation, characteristics, and applications. Finally, the future applications, current challenges, and development of hydrophobic thin films are discussed, and a brief perspective on future research directions is provided.

14.
Environ Sci Pollut Res Int ; 30(27): 70731-70741, 2023 Jun.
Article En | MEDLINE | ID: mdl-37155091

Adsorption of vanadium from wastewater defends the environment from toxic ions and contributes to recover the valuable metal. However, it is still challenging for the separation of vanadium (V5+) and chromium (Cr6+) because of their similar properties. Herein, a kind of CeO2 nanorod containing oxygen vacancies is facilely synthesized which displays ultra-high selectivity of V5+ against various competitive ions (i.e., Fe, Mn, Cr, Ni, Cu, Zn, Ga, Cd, Ba, Pb, Mg, Be, and Co). Moreover, a large separation factor (SFV/Cr) of 114,169.14 for the selectivity of V5+ is achieved at the Cr6+/V5+ ratio of 80 with the trace amount of V5+ (~ 1 mg/L). The results show that the process of V5+ uptake is the monolayer homogeneous adsorption and is controlled by external and intraparticle diffusions. In addition, it also shows that V5+ is reduced to V3+ and V4+ and then formation of V-O complexation. This work offers a novel CeO2 nanorod material for efficient separation of V5+ and Cr6+ and also clarifies the mechanism of the V5+ adsorption on the CeO2 surface.


Vanadium , Water Pollutants, Chemical , Chromium/analysis , Ions , Wastewater , Adsorption , Water Pollutants, Chemical/analysis
15.
Chem Commun (Camb) ; 59(39): 5874-5877, 2023 May 11.
Article En | MEDLINE | ID: mdl-37089054

We synthesized three soluble perinone isomers as electron transport materials in p-i-n perovskite solar cells. The cis-isomer BBIN-2 possesses higher LUMO level and electron mobility than the trans-isomers. The BBIN-2 devices showed the highest power conversion efficiency of 19.36%, demonstrating the potential of perinone dyes in perovskite solar cells.

16.
ACS Appl Mater Interfaces ; 15(12): 16277-16287, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36930799

Daytime radiative coolers cool objects below the air temperature without any electricity input, while most of them are limited by a silvery or whitish appearance. Colored daytime radiative coolers (CDRCs) with diverse colors, scalable manufacture, and subambient cooling have not been achieved. We introduce a polymer-Tamm photonic structure to enable a high infrared emittance and an engineered absorbed solar irradiance, governed by the quality factor (Q-factor). We theoretically determine the theoretical thresholds for subambient cooling through yellow, magenta, and cyan CDRCs. We experimentally fabricate and observe a temperature drop of 2.6-8.8 °C on average during the daytime and 4.0-4.4 °C during the nighttime. Furthermore, we demonstrate a scalable-manufactured magenta CDRC with a width of 60 cm and a length of 500 cm by a roll-to-roll deposition technique. This work provides guidelines for large-scale CDRCs and offers unprecedented opportunities for potential applications with energy-saving, aesthetic, and visual comfort demands.

17.
Front Oncol ; 13: 1138837, 2023.
Article En | MEDLINE | ID: mdl-36910648

Objectives: To explore the direct and indirect heat damage zone of radiofrequency ablation (RFA) in porcine vertebrae and to verify the safety of RFA in a vascularized vertebral tumor model. Methods: RFA was performed in the porcine lumbar vertebrae. Magnetic resonance (MR) imaging, hematoxylin and eosin (HE), and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) were used to assess the extent of direct and indirect injuries after RFA. The cavity of lumbar vertebrae was made, and the adjacent muscle flap was used to fill the cavity to make a vertebrae tumor model. RFA was performed in the vascularized vertebral tumor model. Results: T1-weighted images showed a hypointensive region in the center surrounded by a more hypointensive rim on day 0 and 14. T2-weighted images showed that RFA zone was hypointensive on day 0. On day 7, hypointensity was detected in the center surrounded by a hyperintensive rim. HE showed that the RFA zone could be clearly observed on day 14. Thin bone marrow loss areas were seen around the RFA zone, which was consistent with the hyperintensive rim on the T2-weighted images. TUNEL showed a large number of apoptotic cells in the RFA zone. During RFA in the vertebral tumor model, the temperature of all monitoring positions was less than 45 °C. Conclusion: Using in vivo experiments, the effective zone of RFA was evaluated by MR imaging and pathology, and the direct and indirect damage range were obtained. The safety of RFA was verified by RFA in a vascularized vertebral tumor model.

18.
Appl Opt ; 62(3): 620-626, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36821265

We numerically explored the enhanced performance and physical mechanism of semiconductor laser (SL) based reservoir computation (RC) with double optoelectronic feedback (DOEF). One-step and multistep Santa Fe time series predictions were used as standard test benchmarks in this work. We found that in the optimized parameter region the normalized mean square error (NMSE) of an SL-based RC under DOEF is smaller than an SL-based RC with single optoelectronic feedback (SOEF). In addition, the performance improvement is more obvious for multistep prediction, which is particularly suitable for more complex tasks that requires a higher memory capability (MC). The enriched node states (optical intensity of the virtual nodes for each sample) and the enhanced MC of the proposed DOEF were verified by a comparison to SOEF under the optimized feedback strength. The influence of the feedback strength and the delay difference on the NMSE and the MC was also investigated. Our study should be helpful in the design of a high-performance optoelectronic RC based on an SL.

19.
J Hazard Mater ; 441: 129884, 2023 01 05.
Article En | MEDLINE | ID: mdl-36084465

The removal of trivalent arsenic (As (III)) from water has received extensive attention from researchers. Iron electrocoagulation (Fe-EC) is an efficient technology for arsenic removal. However, electrode passivation hinders the development and application of Fe-EC. In this work, an innovative Fe-EC route was developed to remove As (III) through an electrochemical-siderite packed column (ESC). Ferrous ions were produced from siderite near the anode, and hydroxide was generated near the cathode during the electrochemical decomposition of siderite. As a result, an effect of Fe-EC-like was obtained. The results showed that an excellent removal performance of As (III) (>99%) was obtained by adjusting the parameters (As (III) concentration at 10 mg/L, pH at 7, Na2SO4 at 10 mM and the hydraulic retention time at 30 min) and the oxidation rate of As (III) reached 84.12%. The mechanism analysis indicated that As (III) was oxidized to As (Ⅴ) by the produced active oxide species and electrode, and then was removed by capturing on the iron oxide precipitates. As (III) was likely to be oxidized in two ways, one by the reactive oxygen species (possibly •OH, Fe(IV) and •O2- species), and another directly by the anode. The long-term effectiveness of arsenic removal demonstrated that ESC process based on the electrochemical-siderite packed column was an appropriate candidate for treating As (III) pollution.


Arsenic , Water Pollutants, Chemical , Water Purification , Arsenic/chemistry , Carbonates , Ferric Compounds , Flocculation , Iron/chemistry , Oxidation-Reduction , Oxides , Reactive Oxygen Species , Water , Water Pollutants, Chemical/chemistry , Water Purification/methods
20.
ACS Appl Mater Interfaces ; 14(47): 53380-53389, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36380466

As the world is faced with the coronavirus disease 2019 (COVID-19) pandemic, photocatalytic antibacterial ceramics can reduce the consumption of disinfectants and improve the safety of the public health environment. However, these antibacterial ceramics are often limited by poor stability and low light utilization efficiency. Herein, an antibacterial ceramic was developed via the method of facile in situ etching of upconversion glass-ceramics (UGC) (FIEG) with HCl, in which the BiOCl nanosheets were in situ grown on the surface of GC to improve its stability and antibacterial activity. The results suggest that the upconversion antibacterial ceramics can harvest and utilize near-infrared (NIR) photons efficiently, which display notable antibacterial activity for Escherichia coli (E. coli) under NIR (≥780 nm) and visible light (420-780 nm) irradiation, with a maximum inactivation rate of 7.5 log in 30 min. Meanwhile, in the cycle experiment, more than 6 log inactivation of E. coli was achieved using an antibacterial ceramic sheet after 2-h NIR light irradiation, and the stability of the antibacterial ceramic was discussed. Furthermore, the reactive species, fluorescence-based live/dead cells, and cell structure of bacteria were analyzed to verify the antibacterial mechanism. This study provides a promising strategy for the construction of efficient and stable antibacterial ceramics.


COVID-19 , Escherichia coli , Humans , Ceramics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
...