Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 398: 130515, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437970

RESUMEN

Two kinds of Fe2O3-modified digestate-derived biochar (BC) were prepared and their effects on anaerobic digestion (AD) of kitchen waste (40.0 g VS/L) were investigated, with BC and Fe2O3 addition used as a comparison. The results showed that Fe2O3-modified BC (Fe2O3-BC1 prepared by co-precipitation and Fe2O3-BC2 by impregnation) significantly increased methane yield (20.8 % and 16.4 %, respectively) and reduced volatile fatty acid concentration (35.6 % and 29.6 %, respectively). Microbial high-throughput analysis revealed that Fe2O3-modified BC selectively enriched Clostridium (47.3 %) and Methanosarcina (72.2 %), suggesting that direct interspecies electron transfer contributing to improved biogas production performance was established and enhanced. Correlation analysis indicated that biogas production performance was improved by the larger specific surface area (83.4 m2/g), pore volume (0.101 cm3/g), and iron content (97.4 g/Kg) of the BC. These results offer insights for enhancing the efficacy of AD processes using Fe2O3-modified BCs as additives.


Asunto(s)
Biocombustibles , Carbón Orgánico , Compuestos Férricos , Hierro , Anaerobiosis
2.
Chemosphere ; 354: 141732, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499072

RESUMEN

Malignant invasive Erigeron canadensis, as a typical lignocellulosic biomass, is a formidable challenge for sustainable and efficient resource utilization, however nanobubble water (NBW) coupled with anaerobic digestion furnishes a prospective strategy with superior environmental and economic effectiveness. In this study, influence mechanism of various O2-NBW addition times on methanogenic performance of E. canadensis during anaerobic digestion were performed to achieve the optimal pollution-free energy conversion. Results showed that supplementation of O2-NBW in digestion system could significantly enhance the methane production by 10.70-16.17%, while the maximum cumulative methane production reached 343.18 mL g-1 VS in the case of one-time O2-NBW addition on day 0. Furthermore, addition of O2-NBW was conducive to an increase of 2-90% in the activities of dehydrogenase, α-glucosidase and coenzyme F420. Simultaneously, both facultative bacteria and methanogenic archaea were enriched as well, further indicating that O2-NBW might be responsible for facilitating hydrolytic acidification and methanogenesis. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) cluster analysis, provision of O2-NBW enhanced the metabolism of carbohydrate and amino acid, translation as well as membrane transport of bacteria and archaea. This study might offer the theoretical guidance and novel insights for efficient recovery of energy from lignocellulosic biomass on account of O2-NBW adhibition in anaerobic digestion system, progressing tenor of carbon-neutral vision.


Asunto(s)
Erigeron , Anaerobiosis , Agua , Bacterias , Archaea , Suplementos Dietéticos , Metano , Reactores Biológicos , Aguas del Alcantarillado/química
3.
Bioresour Technol ; 393: 130112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013034

RESUMEN

This study focused on the impacts of heterogeneous Fenton-like pretreatment on the humification and bacterial community during co-composting of wheat straw with cattle dung covered with a semi-permeable membrane. In this study, FeOCl and low concentration of H2O2 were used for pretreatment and composting, which lasted for 39 days. The results showed that the pretreatment promoted the humification process, with degree of polymerization and percentage of humic acid increasing by 53.2 % and 7.3 %, respectively. Furthermore, the diversity and structure of bacterial communities were altered by pretreatment. During the thermophilic phase, pretreatment considerably promoted the metabolism of carbohydrate. According to redundancy analysis, C/N, moisture and organic matter were the key environmental factors that dominated the microbial community. In summary, heterogeneous Fenton-like pretreatment provided a novel idea for improving the humic acid content and maturity of the compost pile.


Asunto(s)
Compostaje , Microbiota , Animales , Bovinos , Sustancias Húmicas , Suelo , Peróxido de Hidrógeno , Bacterias , Estiércol
4.
Mar Pollut Bull ; 194(Pt A): 115304, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481896

RESUMEN

Previous studies of Microplastics (Mps) pollution focused on abundance, effect on organisms, and origins. Mps could also be indicators to evaluate pollution level. Beach Quality Indices (BQIs) are useful in understanding Mps pollution level. This study is to assess magnitude, impact and quality of beaches using BQIs, by determining abundance, shape, and size of Mps in beach sediments, which is the first effort in China. Three BQIs, i.e. Microplastic Pollution Index (MPPI), Environmental Status Index (ESI), Coefficient of Microplastic Impact (CMPI), were employed involving Sector Analysis Approach. All beaches had "very high" abundance by MPPI, were classified "bad" by ESI, and fell in "red" sector using Sector Analysis Approach by intergradation of MPPI and ESI. The impact of fiber morphology was "extreme" based on CMPI. The average abundance was 664±80 Mps/kg. Fibers occupied >97 % of Mps, with 31 % of black Mps. A model was proposed to determine Mps origins.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos/análisis , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Sedimentos Geológicos
5.
Water Res ; 241: 120166, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290196

RESUMEN

Dissolved organic matters (DOM) are widely present in different water sources, causing significant effects on water treatment processes. Herein, the molecular transformation behavior of DOM during peroxymonosulfate (PMS) activation by biochar for organic degradation in a secondary effluent were comprehensively analyzed. Evolution of DOM was identified and inhibition mechanisms to organic degradation were elucidated. DOM underwent oxidative decarbonization (e.g., -C2H2O, -C2H6, -CH2 and -CO2), dehydrogenation (-2H) and dehydration reactions by ·OH and SO4·-. N and S containing compounds witnessed deheteroatomisation (e.g., -NH, -NO2+H, -SO2, -SO3, -SH2), hydration (+H2O) and N/S oxidation reactions. Among DOM, CHO-, CHON-, CHOS-, CHOP- and CHONP-containing molecules showed moderate inhibition while condensed aromatic compounds and aminosugars exhibited strong and moderate inhibition effects on contaminant degradation. The fundamental information could provide references for the rational regulation of ROS composition and DOM conversion process in a PMS system. This in turn offered theoretical guidance to minimize the interference of DOM conversion intermediates on PMS activation and degradation of target pollutants.


Asunto(s)
Materia Orgánica Disuelta , Contaminantes Ambientales , Peróxidos , Compuestos Orgánicos
6.
Molecules ; 28(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175291

RESUMEN

Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Anaerobiosis , Fermentación , Ácidos Grasos Volátiles/metabolismo , Biotecnología/métodos , Reactores Biológicos , Metano/metabolismo
7.
Environ Sci Technol ; 57(17): 7063-7073, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37018050

RESUMEN

Pyrolysis of oily sludge (OS) is a feasible technology to match the principle of reduction and recycling; however, it is difficult to confirm the feasible environmental destination and meet the corresponding requirements. Therefore, an integrated strategy of biochar-assisted catalytic pyrolysis (BCP) of OS and residue utilization for soil reclamation is investigated in this study. During the catalytic pyrolysis process, biochar as a catalyst intensifies the removal of recalcitrant petroleum hydrocarbons at the expense of liquid product yield. Concurrently, biochar as an adsorbent can inhibit the release of micromolecular gaseous pollutants (e.g. HCN, H2S, and HCl) and stabilize heavy metals. Due to the assistance of biochar, pyrolysis reactions of OS are more likely to occur and require a lower temperature to achieve the same situation. During the soil reclamation process, the obtained residue as a soil amendment can not only provide a carbon source and mineral nutrients but can also improve the abundance and diversity of microbial communities. Thus, it facilitates the plant germination and the secondary removal of petroleum hydrocarbons. The integrated strategy of BCP of OS and residue utilization for soil reclamation is a promising management strategy, which is expected to realize the coordinated and benign disposal of more than one waste.


Asunto(s)
Petróleo , Suelo , Suelo/química , Aguas del Alcantarillado/química , Pirólisis , Carbón Orgánico , Aceites , Hidrocarburos
8.
Sci Total Environ ; 861: 160552, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36511320

RESUMEN

Perennial energy grasses (PEGs) are supposed to be a momentous heading to the development of biomass energy on account of their characteristic superiorities of high yield, strong adaptability and no direct competition with food crops. Anaerobic digestion of PEGs with great biogas-producing potential occupies an irreplaceable status despite a variety of pathways for conversion to renewable energy. However, efficient digestion of PEGs suffers from severe challenges in connection with feedstock properties such as recalcitrant structures. This review highlights recent research in anaerobic digestion of PEGs and focuses on essential aspects enhancing anaerobic digestion performance: types and properties of grasses, diverse pretreatments, various co-feedstocks for co-digestion, dosing of different additives, and improvements in reactors. General discussions on the future prospects of anaerobic digestion of PEGs are proposed. Overcoming knowledge gaps and technical limitations will facilitate further application of PEGs on an industrial scale.


Asunto(s)
Biocombustibles , Poaceae , Anaerobiosis , Productos Agrícolas , Metano , Reactores Biológicos
9.
Environ Sci Pollut Res Int ; 30(12): 32776-32789, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36471148

RESUMEN

Semipermeable membrane-covered composting is one of the most commonly used composting technologies in northeast China, but its humification process is not yet well understood. This study employed a semipermeable membrane-covered composting system to detect the organic matter humification and bacterial community evolution patterns over the course of agricultural waste composting. Variations in physicochemical properties, humus composition, and bacterial communities were studied. The results suggested that membrane covering improved humic acid (HA) content and degree of polymerization (DP) by 9.28% and 21.57%, respectively. Bacterial analysis indicated that membrane covering reduced bacterial richness and increased bacterial diversity. Membrane covering mainly affected the bacterial community structure during thermophilic period of composting. RDA analysis revealed that membrane covering may affect the bacterial community by altering the physicochemical properties such as moisture content. Correlation analysis showed that membrane covering activated the dominant genera Saccharomonospora and Planktosalinus to participate in the formation of HS and HA in composting, thus promoting HS formation and its structural complexity. Membrane covering significantly reduced microbial metabolism during the cooling phase of composting.


Asunto(s)
Compostaje , Bovinos , Animales , Estiércol , Triticum , Suelo , Sustancias Húmicas/análisis , Bacterias
10.
Chemosphere ; 287(Pt 3): 132259, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34543904

RESUMEN

Constructed wetland is considered a promising approach for water remediation due to its high efficiency, low operation costs, and ecological benefits, but the large amounts of wetland plant biomass need to be properly harvested and utilized. Recently, wetland plant derived biochar has drawn extensive attention owing to its application potential. This paper provides an updated review on the production and characteristics of wetland plant derived biochar, and its utilization in soil improvement, carbon sequestration, environmental remediation, and energy production. In comparison to hydrothermal carbonization and gasification, pyrolysis is a more common technique to convert wetland plant to biochar. Characteristics of wetland plant biochars varied with plant species, growth environment of plant, and preparation conditions. Wetland plant biochar could be a qualified soil amendment owing to its abundant nutrients. Notably, wetland plant biochar exhibited considerable sorption capacity for various inorganic and organic contaminants. However, the potentially toxic substances (e.g. heavy metal and polycyclic aromatic hydrocarbons) retained in wetland plant biochar should be noticed before large-scale application. To overcome the drawbacks from the scattered distribution, limited productivity, and seasonal operation of constructed wetlands, the economic feasibility of wetland plant biochar production system could be improved via using mobile pyrolysis unit, utilizing local waste heat, and exploiting all the byproducts. Future challenges in the production and application of wetland plant derived biochar include the continuous supply of feedstock and proper handling of potentially hazardous components in the biochar.


Asunto(s)
Restauración y Remediación Ambiental , Humedales , Biomasa , Carbón Orgánico
11.
J Hazard Mater ; 421: 126794, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34365236

RESUMEN

Conversion of digestate into biochar-based catalysts is an effective strategy for disposal and resource utilization. The active sites on biochar correlated with reactive species formation in peroxymonosulfate (PMS) system directly. Clarifying the structure-performance relationship of digestate derived biochar in PMS system was essential for decomposition of contaminants. Herein, dairy manure digestate derived biochar (DMDB) was prepared for PMS activation and sulfamethoxazole (SMX) degradation. The higher pyrolysis temperature could promote effective sites generation. Especially, the DMDB-800 catalyst exhibited excellent performance for PMS activation, achieving 90.2% degradation of SMX within 60 min. Based on the correlation analysis between log (k) values and active sites, defects, graphite N and CO were identified as dominant sites for PMS activation. The 1O2 oxidation and surface electron transfer were critical routes for SMX degradation. Besides, the degradation pathways of SMX were proposed according to DFT calculations and intermediates determination. The cleavage of the sulfonamide bond, hydroxylation of the benzene ring and oxidation of the amino group mainly occurred during SMX degradation. Overall, this study provides deep insights into the enhanced mechanism of tunable active sites on DMDBs for PMS activation, boosting the application of digestate biochar for water treatment in advanced oxidation systems.


Asunto(s)
Biocombustibles , Peróxidos , Dominio Catalítico , Carbón Orgánico , Sulfanilamida
12.
Sci Total Environ ; 807(Pt 3): 151014, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662616

RESUMEN

Sustainable and resourceful utilization of garden waste with high lignocellulosic content remains a huge challenge, anaerobic digestion (AD) and hydrothermal treatment provide prospective technologies with achieving environmental and economic benefits. In this study, a 7-28 d AD was provided as a biomass pretreatment means and combined with hydrothermal carbonization (HTC) to treat three typical garden wastes (leaves, branches, grass). The results showed that AD pretreatment could effectively change the surface composition and structure properties of the feedstocks and thus modulating the properties of the hydrochar downstream. Compared to the unpretreatment samples, the specific surface area (SSA), higher heating value (HHV), energy density and nutrient elements (P and K) of hydrochar obtained by AD pretreatment were significantly improved and enriched, respectively. Specifically, the highest HHV of hydrochar obtained from leaves, branches, and grass were 25.71, 25.63, and 23.81 MJ/kg, which obtained with 21, 14, and 7 d of AD pretreatment respectively. The P contents of hydrochar of leaves and grass pretreated with AD for 14 and 7 d were 205% and 15% higher than those without AD pretreatment, respectively. Additionally, in this coupled system, the biomass energy recovery of 90.2% (78.2% biochar and 12.0% CH4) was achieved on leaves pretreated with AD for 21 d. Energy recovery of 81.2% (66.8% biochar, 14.4% CH4) and 71.3% (39.7% biochar, 31.6% CH4) was obtained by 14 d of AD pretreatment on branches and grass, respectively. Thus, this study enhances energy utilization efficiency and reduces secondary waste generation, providing valuable new insights into AD coupled with HTC technology.


Asunto(s)
Jardines , Nutrientes , Anaerobiosis , Jardinería , Estudios Prospectivos
13.
Sheng Wu Gong Cheng Xue Bao ; 37(10): 3636-3652, 2021 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-34708616

RESUMEN

With continuous improvement of people's living standards, great efforts have been paid to environmental protection. Among those environmental issues, soil contamination by petroleum hydrocarbons has received widespread concerns due to the persistence and the degradation difficulty of the pollutants. Among the various remediation technologies, in-situ microbial remediation enhancement technologies have become the current hotspot because of its low cost, environmental friendliness, and in-situ availability. This review summarizes several in-situ microbial remediation technologies such as bioaugmentation, biostimulation, and integrated remediation, as well as their engineering applications, providing references for the selection of in-situ bioremediation technologies in engineering applications. Moreover, this review discusses future research directions in this area.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Humanos , Hidrocarburos , Suelo , Microbiología del Suelo
14.
Artículo en Inglés | MEDLINE | ID: mdl-34444608

RESUMEN

Petroleum contaminated soils have become a great concern worldwide. Bioremediation has been widely recognized as one of the most promising technologies and has played an important role in solving the issues of petroleum contaminated soils. In this study, a bibliometric analysis using VOSviewer based on Web of Science data was conducted to provide an overview on the field of bioremediation of petroleum contaminated soils. A total of 7575 articles were analyzed on various aspects of the publication characteristics, such as publication output, countries, institutions, journals, highly cited papers, and keywords. An evaluating indicator, h-index, was applied to characterize the publications. The pace of publishing in this field increased steadily over last 20 years. China accounted for the most publications (1476), followed by the United States (1032). The United States had the highest h-index (86) and also played a central role in the collaboration network among the most productive countries. The Chinese Academy of Sciences was the institution with the largest number of papers (347) and cooperative relations (52). Chemosphere was the most productive journal (360). Our findings indicate that the influence of developing countries has increased over the years, and researchers tend to publish articles in high-quality journals. At present, mainstream research is centered on biostimulation, bioaugmentation, and biosurfactant application. Combined pollution of petroleum hydrocarbons and heavy metals, microbial diversity monitoring, biosurfactant application, and biological combined remediation technology are considered future research hotspots.


Asunto(s)
Petróleo , Contaminantes del Suelo , Bibliometría , Biodegradación Ambiental , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
15.
Environ Res ; 202: 111687, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273370

RESUMEN

Fungi residue, vinasse, and biogas residue differ from general biomass waste due to natural microbial action. Microbial fermentation helps create natural channels for the permeation of activators and produces proteins for natural nitrogen doping. Inspired by these advantages on porous carbon synthesis, this study adopted dual activators of KOH and KHCO3 to synthesize porous carbon with different pore ratios for efficient adsorption of volatile organic compounds (VOCs). The fungi residue possessed the least lignin due to the most severe microbial action, contributing to the best pore structures after activation. The etching effect from potassium compounds and gas foaming from the carbonate decomposition contributed to creating hierarchical porous carbon with ultra-high surface area, ca. 1536.8-2326.5 m2/g. However, KHCO3 addition also caused nitrogen erosion, such that lower adsorption capacity was attained even with a higher surface area when the mass ratio of KOH/KHCO3 decreased from 2.5:0.5 to 2:1. The maximum adsorption capacities of chlorobenzene (CB) and benzene (PhH) reached 594.0 and 394.3 mg/g, respectively. Pore structure variations after adsorption were evaluated by freeze treatment to discover the adsorption mechanism. The surface area after CB and PhH adsorption decreased 40.3% and 34.5%, respectively. Most of the mesopores might transform into micropores due to the mono/multilayer stacking of adsorbates. The VOC adsorption kinetics were simulated by the Pseudo-first- and -second-order models and Y-N model. This paper provides a new approach for high-value biomass waste utilization after microbial action to synthesize efficient adsorbents for VOCs.


Asunto(s)
Carbono , Compuestos Orgánicos Volátiles , Adsorción , Biomasa , Porosidad
16.
J Hazard Mater ; 409: 124986, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33388449

RESUMEN

Oily sludge (OS) is a hazardous waste and pyrolysis is a promising technology to achieve energy recovery and non-hazardous disposal simultaneously. However, the distribution of hazardous elements, including N/S/Cl and heavy metals, in pyrolytic products possibly causes secondary pollution. This study conducted a systematic research on hazardous elements flow during OS pyrolysis under variant temperature. Results showed that N/S/Cl in OS were distributed 44.77-15.51 wt%, 83.29-80.22 wt%, and 78.59-73.41 wt% into the solid residues after pyrolysis, respectively. Elevating pyrolysis temperature facilitated more N/S/Cl flowing into pyrolytic oil and gas. The macromolecular N-/S-/Cl-containing compounds, including amides, amines, nitriles, sulfonates, chloroalkanes, etc., were widely distributed in pyrolytic oil and gas products. The micromolecular N-/S-/Cl-containing pollutants released between 200 and 400 °C included HCN, NH3, NOx, H2S, CH4S, CS2, SO2, and HCl, which originated from the decomposition of the amine N, organic sulfide and sulfone-S, and inorganic Cl, respectively. The main pollutants released at above 400 °C included NH3, HCN, NOx, CS2, and SO2, which were derived from the decomposition of heterocyclic N and inorganic pyritic-S and sulfate-S. Moreover, the solid residues intercepted more than 60.0 wt% of total heavy metals, which should be concerned in the future.

17.
Sci Total Environ ; 727: 138475, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32334213

RESUMEN

Edible fungi residues are natural fungi etching feedstock that provide loose structure with multidimensional framework. These advantages help KOH to penetrate rigid cytoderm into innermost space and attain porous carbon with high porosity. Utilization of edible fungi residue not only avoids artificial operation of fungal inoculation and culture steps, but also provides new method for waste disposal. As expected, carbon derived from three fungi residues attains excellent porosity. The highest surface area reaches 3463.3 m2/g, which is approximately 2 and 6 times higher than original biomass (1630.7 m2/g) and commercial carbon (691.1 m2/g), respectively. Filiform structures derived from hyphae growth contribute to pores formation. Coprinus comatus fungi residue as optimal raw material obtains hierarchical pore channel with dominant micropores (76%) and natural nitrogen doping (1.28 at.%). The highest DCM and CB adsorption capacities attain 716.9 and 641.7 mg/g, respectively, which are 13 and 6 times higher than that of commercial carbon. The positive effects from fungi growth improve DCM adsorption particularly. DCM adsorption over fungi residues derived carbon is twice higher than original biomass carbon. Competitive adsorption, recyclability, surface variations and desorption components after saturated adsorption are fully investigated for practical application. The present study provides a new insight for developing high-value technology for synthesizing Cl-VOCs adsorbents using edible fungi residues.


Asunto(s)
Carbono , Hongos , Adsorción , Biomasa , Porosidad
18.
Bioresour Technol ; 296: 122320, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31678704

RESUMEN

Thiamphenicol (TAP) is a typical medicament in animal husbandry and aquaculture for treating diverse infections. In this work, thiamphenicol biodegradation performance via microalgae was tested. The cultivation results showed that TAP could be biodegraded via the target algae. Chlorella sp. L38 presented strong adaptive ability to high concentration TAP. Biodegradation, biosorption and bioaccumulation were the dominant metabolic fates. Biodegradation contributed around 97% of the total removal efficiency at the TAP concentration of 46.2 mg·L-1. The removal of TAP by Chlorella L38 and UTEX1602 agreed with the kinetic range of zero-order reaction, and the shortest half-lives were 3.2 d and 5.0 d. Based on the identification of metabolites, the metabolic pathway of TAP by microalgae was proposed, including chlorination, chlorine substitution, dehydration and hydroxylation. Therefore, biological treatment via microalgae has the potential for TAP purification.


Asunto(s)
Chlorella , Microalgas , Tianfenicol , Animales , Acuicultura , Biodegradación Ambiental
19.
Mol Genet Genomics ; 294(6): 1441-1453, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31214764

RESUMEN

Soil salinization is one major constraint to plant geographical distribution, yield, and quality, and as an ideal plant for the "greening" of flat-roofed buildings, Sedum lineare Thunb. has strong tolerance against a variety of environmental adversities including salinity with the underlying mechanism still remaining unknown. In this study, we performed de novo transcriptome sequencing on leaf and root samples of NaCl-treated S. lineare Thunb. and identified 584 differentially expressed genes (DEGs), which were further annotated by gene function classification and pathway assignments using the public data repositories. In addition to the increased gene expression level verified by qRT-PCR, the elevated activities of the corresponding enzymes were also demonstrated for peroxidase (POD), glutathione peroxidases (GPX), and cysteine synthase (CSase) in the NaCl-treated roots. Furthermore, two highly inducible genes without known functions related to salt tolerance were selected to be overexpressed and tested for their effects on salt tolerance in the model plant, Arabidopsis thaliana. Upon 150 mM NaCl treatment, 35S:SlCXE but not 35S:SlCYP72A transgenic Arabidopsis seedlings exhibited improved salt resistance as shown by the increased seed germination rates and longer primary roots of transgenic seedlings when compared to wild-type plants. Taken together, this work laid a foundation for a better understanding of the salt adaptation mechanism of S. lineare Thunb. and genes identified could serve as useful resources for the development of more salt-tolerant varieties of other species through genetic engineering.


Asunto(s)
Estrés Salino/genética , Sedum/genética , Transcriptoma , Arabidopsis/genética , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Plantas Modificadas Genéticamente/genética , Sedum/anatomía & histología , Sedum/enzimología , Análisis de Secuencia de ARN
20.
PLoS One ; 11(4): e0153517, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27093611

RESUMEN

Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1) transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group) based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs) were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs) exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the "gain-of-function" transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster transpirational water loss than wild type and 35S:B-TsRAVs lines. Taken together, our results suggest that two groups of TsRAVs perform distinct regulating roles during plant growth and abiotic defense including drought and salt, and A-TsRAVs are more likely than B-TsRAVs to act as negative regulators in the above-mentioned biological processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Cloruro de Sodio/metabolismo , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Sequías , Germinación/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/genética , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...