Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38436561

RESUMEN

Enrichment analysis (EA) is a common approach to gain functional insights from genome-scale experiments. As a consequence, a large number of EA methods have been developed, yet it is unclear from previous studies which method is the best for a given dataset. The main issues with previous benchmarks include the complexity of correctly assigning true pathways to a test dataset, and lack of generality of the evaluation metrics, for which the rank of a single target pathway is commonly used. We here provide a generalized EA benchmark and apply it to the most widely used EA methods, representing all four categories of current approaches. The benchmark employs a new set of 82 curated gene expression datasets from DNA microarray and RNA-Seq experiments for 26 diseases, of which only 13 are cancers. In order to address the shortcomings of the single target pathway approach and to enhance the sensitivity evaluation, we present the Disease Pathway Network, in which related Kyoto Encyclopedia of Genes and Genomes pathways are linked. We introduce a novel approach to evaluate pathway EA by combining sensitivity and specificity to provide a balanced evaluation of EA methods. This approach identifies Network Enrichment Analysis methods as the overall top performers compared with overlap-based methods. By using randomized gene expression datasets, we explore the null hypothesis bias of each method, revealing that most of them produce skewed P-values.


Asunto(s)
Benchmarking , RNA-Seq
2.
J Mol Biol ; 435(14): 168001, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764355

RESUMEN

Prediction of orthologs is an important bioinformatics pursuit that is frequently used for inferring protein function and evolutionary analyses. The InParanoid database is a well known resource of ortholog predictions between a wide variety of organisms. Although orthologs have historically been inferred at the level of full-length protein sequences, many proteins consist of several independent protein domains that may be orthologous to domains in other proteins in a way that differs from the full-length protein case. To be able to capture all types of orthologous relations, conventional full-length protein orthologs can be complemented with orthologs inferred at the domain level. We here present InParanoiDB 9, covering 640 species and providing orthologs for both protein domains and full-length proteins. InParanoiDB 9 was built using the faster InParanoid-DIAMOND algorithm for orthology analysis, as well as Domainoid and Pfam to infer orthologous domains. InParanoiDB 9 is based on proteomes from 447 eukaryotes, 158 bacteria and 35 archaea, and includes over one billion predicted ortholog groups. A new website has been built for the database, providing multiple search options as well as visualization of groups of orthologs and orthologous domains. This release constitutes a major upgrade of the InParanoid database in terms of the number of species as well as the new capability to operate on the domain level. InParanoiDB 9 is available at https://inparanoidb.sbc.su.se/.


Asunto(s)
Biología Computacional , Dominios Proteicos , Algoritmos , Proteoma
3.
NAR Genom Bioinform ; 4(4): lqac093, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36458021

RESUMEN

A vast scenario of potential disease mechanisms and remedies is yet to be discovered. The field of Network Medicine has grown thanks to the massive amount of high-throughput data and the emerging evidence that disease-related proteins form 'disease modules'. Relying on prior disease knowledge, network-based disease module detection algorithms aim at connecting the list of known disease associated genes by exploiting interaction networks. Most existing methods extend disease modules by iteratively adding connector genes in a bottom-up fashion, while top-down approaches remain largely unexplored. We have created TOPAS, an iterative approach that aims at connecting the largest number of seed nodes in a top-down fashion through connectors that guarantee the highest flow of a Random Walk with Restart in a network of functional associations. We used a corpus of 382 manually selected functional gene sets to benchmark our algorithm against SCA, DIAMOnD, MaxLink and ROBUST across four interactomes. We demonstrate that TOPAS outperforms competing methods in terms of Seed Recovery Rate, Seed to Connector Ratio and consistency during module detection. We also show that TOPAS achieves competitive performance in terms of biological relevance of detected modules and scalability.

4.
Sci Rep ; 12(1): 16531, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192495

RESUMEN

The gene regulatory network (GRN) of a cell executes genetic programs in response to environmental and internal cues. Two distinct classes of methods are used to infer regulatory interactions from gene expression: those that only use observed changes in gene expression, and those that use both the observed changes and the perturbation design, i.e. the targets used to cause the changes in gene expression. Considering that the GRN by definition converts input cues to changes in gene expression, it may be conjectured that the latter methods would yield more accurate inferences but this has not previously been investigated. To address this question, we evaluated a number of popular GRN inference methods that either use the perturbation design or not. For the evaluation we used targeted perturbation knockdown gene expression datasets with varying noise levels generated by two different packages, GeneNetWeaver and GeneSpider. The accuracy was evaluated on each dataset using a variety of measures. The results show that on all datasets, methods using the perturbation design matrix consistently and significantly outperform methods not using it. This was also found to be the case on a smaller experimental dataset from E. coli. Targeted gene perturbations combined with inference methods that use the perturbation design are indispensable for accurate GRN inference.


Asunto(s)
Escherichia coli , Redes Reguladoras de Genes , Algoritmos , Biología Computacional/métodos , Escherichia coli/genética
5.
Nat Commun ; 13(1): 5475, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115838

RESUMEN

The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/metabolismo , Células Clonales/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Análisis Espacio-Temporal
6.
Front Genet ; 13: 855770, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923701

RESUMEN

Accurate inference of gene regulatory networks (GRNs) is important to unravel unknown regulatory mechanisms and processes, which can lead to the identification of treatment targets for genetic diseases. A variety of GRN inference methods have been proposed that, under suitable data conditions, perform well in benchmarks that consider the entire spectrum of false-positives and -negatives. However, it is very challenging to predict which single network sparsity gives the most accurate GRN. Lacking criteria for sparsity selection, a simplistic solution is to pick the GRN that has a certain number of links per gene, which is guessed to be reasonable. However, this does not guarantee finding the GRN that has the correct sparsity or is the most accurate one. In this study, we provide a general approach for identifying the most accurate and sparsity-wise relevant GRN within the entire space of possible GRNs. The algorithm, called SPA, applies a "GRN information criterion" (GRNIC) that is inspired by two commonly used model selection criteria, Akaike and Bayesian Information Criterion (AIC and BIC) but adapted to GRN inference. The results show that the approach can, in most cases, find the GRN whose sparsity is close to the true sparsity and close to as accurate as possible with the given GRN inference method and data. The datasets and source code can be found at https://bitbucket.org/sonnhammergrni/spa/.

7.
Front Genet ; 13: 921286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656321

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2022.792090.].

8.
Front Genet ; 13: 855766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620466

RESUMEN

Functional analysis of gene sets derived from experiments is typically done by pathway annotation. Although many algorithms exist for analyzing the association between a gene set and a pathway, an issue which is generally ignored is that gene sets often represent multiple pathways. In such cases an association to a pathway is weakened by the presence of genes associated with other pathways. A way to counteract this is to cluster the gene set into more homogenous parts before performing pathway analysis on each module. We explored whether network-based pre-clustering of a query gene set can improve pathway analysis. The methods MCL, Infomap, and MGclus were used to cluster the gene set projected onto the FunCoup network. We characterized how well these methods are able to detect individual pathways in multi-pathway gene sets, and applied each of the clustering methods in combination with four pathway analysis methods: Gene Enrichment Analysis, BinoX, NEAT, and ANUBIX. Using benchmarks constructed from the KEGG pathway database we found that clustering can be beneficial by increasing the sensitivity of pathway analysis methods and by providing deeper insights of biological mechanisms related to the phenotype under study. However, keeping a high specificity is a challenge. For ANUBIX, clustering caused a minor loss of specificity, while for BinoX and NEAT it caused an unacceptable loss of specificity. GEA had very low sensitivity both before and after clustering. The choice of clustering method only had a minor effect on the results. We show examples of this approach and conclude that clustering can improve overall pathway annotation performance, but should only be used if the used enrichment method has a low false positive rate.

9.
Nucleic Acids Res ; 50(W1): W623-W632, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35552456

RESUMEN

The Orthology Benchmark Service (https://orthology.benchmarkservice.org) is the gold standard for orthology inference evaluation, supported and maintained by the Quest for Orthologs consortium. It is an essential resource to compare existing and new methods of orthology inference (the bedrock for many comparative genomics and phylogenetic analysis) over a standard dataset and through common procedures. The Quest for Orthologs Consortium is dedicated to maintaining the resource up to date, through regular updates of the Reference Proteomes and increasingly accessible data through the OpenEBench platform. For this update, we have added a new benchmark based on curated orthology assertion from the Vertebrate Gene Nomenclature Committee, and provided an example meta-analysis of the public predictions present on the platform.


Asunto(s)
Benchmarking , Genómica , Filogenia , Genómica/métodos , Proteoma
10.
Bioinformatics ; 38(10): 2918-2919, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561192

RESUMEN

SUMMARY: Predicting orthologs, genes in different species having shared ancestry, is an important task in bioinformatics. Orthology prediction tools are required to make accurate and fast predictions, in order to analyze large amounts of data within a feasible time frame. InParanoid is a well-known algorithm for orthology analysis, shown to perform well in benchmarks, but having the major limitation of long runtimes on large datasets. Here, we present an update to the InParanoid algorithm that can use the faster tool DIAMOND instead of BLAST for the homolog search step. We show that it reduces the runtime by 94%, while still obtaining similar performance in the Quest for Orthologs benchmark. AVAILABILITY AND IMPLEMENTATION: The source code is available at (https://bitbucket.org/sonnhammergroup/inparanoid). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos
11.
Nucleic Acids Res ; 50(W1): W398-W404, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609981

RESUMEN

Accurate inference of gene regulatory networks (GRN) is an essential component of systems biology, and there is a constant development of new inference methods. The most common approach to assess accuracy for publications is to benchmark the new method against a selection of existing algorithms. This often leads to a very limited comparison, potentially biasing the results, which may stem from tuning the benchmark's properties or incorrect application of other methods. These issues can be avoided by a web server with a broad range of data properties and inference algorithms, that makes it easy to perform comprehensive benchmarking of new methods, and provides a more objective assessment. Here we present https://GRNbenchmark.org/ - a new web server for benchmarking GRN inference methods, which provides the user with a set of benchmarks with several datasets, each spanning a range of properties including multiple noise levels. As soon as the web server has performed the benchmarking, the accuracy results are made privately available to the user via interactive summary plots and underlying curves. The user can then download these results for any purpose, and decide whether or not to make them public to share with the community.


Asunto(s)
Benchmarking , Redes Reguladoras de Genes , Algoritmos , Computadores , Biología de Sistemas/métodos
12.
Front Genet ; 13: 792090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350247

RESUMEN

The need for systematic drug repurposing has seen a steady increase over the past decade and may be particularly valuable to quickly remedy unexpected pandemics. The abundance of functional interaction data has allowed mapping of substantial parts of the human interactome modeled using functional association networks, favoring network-based drug repurposing. Network crosstalk-based approaches have never been tested for drug repurposing despite their success in the related and more mature field of pathway enrichment analysis. We have, therefore, evaluated the top performing crosstalk-based approaches for drug repurposing. Additionally, the volume of new interaction data as well as more sophisticated network integration approaches compelled us to construct a new benchmark for performance assessment of network-based drug repurposing tools, which we used to compare network crosstalk-based methods with a state-of-the-art technique. We find that network crosstalk-based drug repurposing is able to rival the state-of-the-art method and in some cases outperform it.

13.
Bioinformatics ; 38(9): 2659-2660, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35266519

RESUMEN

MOTIVATION: Pathway annotation tools are indispensable for the interpretation of a wide range of experiments in life sciences. Network-based algorithms have recently been developed which are more sensitive than traditional overlap-based algorithms, but there is still a lack of good online tools for network-based pathway analysis. RESULTS: We present PathwAX II-a pathway analysis web tool based on network crosstalk analysis using the BinoX algorithm. It offers several new features compared with the first version, including interactive graphical network visualization of the crosstalk between a query gene set and an enriched pathway, and the addition of Reactome pathways. AVAILABILITY AND IMPLEMENTATION: PathwAX II is available at http://pathwax.sbc.su.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Fenómenos Fisiológicos Celulares
14.
Front Genet ; 13: 815692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222536

RESUMEN

The regulatory relationships between genes and proteins in a cell form a gene regulatory network (GRN) that controls the cellular response to changes in the environment. A number of inference methods to reverse engineer the original GRN from large-scale expression data have recently been developed. However, the absence of ground-truth GRNs when evaluating the performance makes realistic simulations of GRNs necessary. One aspect of this is that local network motif analysis of real GRNs indicates that the feed-forward loop (FFL) is significantly enriched. To simulate this properly, we developed a novel motif-based preferential attachment algorithm, FFLatt, which outperformed the popular GeneNetWeaver network generation tool in reproducing the FFL motif occurrence observed in literature-based biological GRNs. It also preserves important topological properties such as scale-free topology, sparsity, and average in/out-degree per node. We conclude that FFLatt is well-suited as a network generation module for a benchmarking framework with the aim to provide fair and robust performance evaluation of GRN inference methods.

15.
Bioinformatics ; 38(8): 2263-2268, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35176145

RESUMEN

MOTIVATION: Inferring an accurate gene regulatory network (GRN) has long been a key goal in the field of systems biology. To do this, it is important to find a suitable balance between the maximum number of true positive and the minimum number of false-positive interactions. Another key feature is that the inference method can handle the large size of modern experimental data, meaning the method needs to be both fast and accurate. The Least Squares Cut-Off (LSCO) method can fulfill both these criteria, however as it is based on least squares it is vulnerable to known issues of amplifying extreme values, small or large. In GRN this manifests itself with genes that are erroneously hyper-connected to a large fraction of all genes due to extremely low value fold changes. RESULTS: We developed a GRN inference method called Least Squares Cut-Off with Normalization (LSCON) that tackles this problem. LSCON extends the LSCO algorithm by regularization to avoid hyper-connected genes and thereby reduce false positives. The regularization used is based on normalization, which removes effects of extreme values on the fit. We benchmarked LSCON and compared it to Genie3, LASSO, LSCO and Ridge regression, in terms of accuracy, speed and tendency to predict hyper-connected genes. The results show that LSCON achieves better or equal accuracy compared to LASSO, the best existing method, especially for data with extreme values. Thanks to the speed of least squares regression, LSCON does this an order of magnitude faster than LASSO. AVAILABILITY AND IMPLEMENTATION: Data: https://bitbucket.org/sonnhammergrni/lscon; Code: https://bitbucket.org/sonnhammergrni/genespider. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Análisis de los Mínimos Cuadrados , Biología de Sistemas , Benchmarking
16.
Sci Rep ; 11(1): 20687, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667255

RESUMEN

This analysis presents a systematic evaluation of the extent of therapeutic opportunities that can be obtained from drug repurposing by connecting drug targets with disease genes. When using FDA-approved indications as a reference level we found that drug repurposing can offer an average of an 11-fold increase in disease coverage, with the maximum number of diseases covered per drug being increased from 134 to 167 after extending the drug targets with their high confidence first neighbors. Additionally, by network analysis to connect drugs to disease modules we found that drugs on average target 4 disease modules, yet the similarity between disease modules targeted by the same drug is generally low and the maximum number of disease modules targeted per drug increases from 158 to 229 when drug targets are neighbor-extended. Moreover, our results highlight that drug repurposing is more dependent on target proteins being shared between diseases than on polypharmacological properties of drugs. We apply our drug repurposing and network module analysis to COVID-19 and show that Fostamatinib is the drug with the highest module coverage.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , SARS-CoV-2 , Antivirales/farmacología , Teorema de Bayes , Biología Computacional/métodos , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Humanos , Polifarmacología , Mapeo de Interacción de Proteínas , Estados Unidos , United States Food and Drug Administration
17.
Bioinformatics ; 37(20): 3553-3559, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33978748

RESUMEN

MOTIVATION: Accurate inference of gene regulatory interactions is of importance for understanding the mechanisms of underlying biological processes. For gene expression data gathered from targeted perturbations, gene regulatory network (GRN) inference methods that use the perturbation design are the top performing methods. However, the connection between the perturbation design and gene expression can be obfuscated due to problems, such as experimental noise or off-target effects, limiting the methods' ability to reconstruct the true GRN. RESULTS: In this study, we propose an algorithm, IDEMAX, to infer the effective perturbation design from gene expression data in order to eliminate the potential risk of fitting a disconnected perturbation design to gene expression. We applied IDEMAX to synthetic data from two different data generation tools, GeneNetWeaver and GeneSPIDER, and assessed its effect on the experiment design matrix as well as the accuracy of the GRN inference, followed by application to a real dataset. The results show that our approach consistently improves the accuracy of GRN inference compared to using the intended perturbation design when much of the signal is hidden by noise, which is often the case for real data. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/sonnhammergrni/idemax. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

18.
Mol Biol Evol ; 38(8): 3033-3045, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33822172

RESUMEN

Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology-evolutionary relatedness-is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit-from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.


Asunto(s)
Especiación Genética , Genómica/tendencias , Filogenia , Genoma Viral , Genómica/métodos
19.
J Mol Biol ; 433(11): 166835, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33539890

RESUMEN

FunCoup (https://funcoup.sbc.su.se) is one of the most comprehensive functional association networks of genes/proteins available. Functional associations are inferred by integrating different types of evidence using a redundancy-weighted naïve Bayesian approach, combined with orthology transfer. FunCoup's high coverage comes from using eleven different types of evidence, and extensive transfer of information between species. Since the latest update of the database, the availability of source data has improved drastically, and user expectations on a tool for functional associations have grown. To meet these requirements, we have made a new release of FunCoup with updated source data and improved functionality. FunCoup 5 now includes 22 species from all domains of life, and the source data for evidences, gold standards, and genomes have been updated to the latest available versions. In this new release, directed regulatory links inferred from transcription factor binding can be visualized in the network viewer for the human interactome. Another new feature is the possibility to filter by genes expressed in a certain tissue in the network viewer. FunCoup 5 further includes the SARS-CoV-2 proteome, allowing users to visualize and analyze interactions between SARS-CoV-2 and human proteins in order to better understand COVID-19. This new release of FunCoup constitutes a major advance for the users, with updated sources, new species and improved functionality for analysis of the networks.


Asunto(s)
Bases de Datos Factuales , Redes Reguladoras de Genes , Especificidad de Órganos , Mapas de Interacción de Proteínas , Teorema de Bayes , COVID-19/metabolismo , COVID-19/virología , Genoma , Interacciones Microbiota-Huesped , Humanos , Unión Proteica , Proteínas , Proteoma , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Factores de Transcripción
20.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466918

RESUMEN

DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Inmunoglobulina E/sangre , Leucocitos Mononucleares/metabolismo , Madres/estadística & datos numéricos , Adulto , Alérgenos/inmunología , Células Cultivadas , Preescolar , Estudios de Cohortes , Femenino , Sangre Fetal/inmunología , Predisposición Genética a la Enfermedad/genética , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Masculino , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...