Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1705: 464184, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37419013

RESUMEN

The orthogonality of separation between ion-pair reversed phase (IP-RP), anion exchange (AEX), and hydrophilic interaction liquid chromatography (HILIC) was evaluated for oligonucleotides. A polythymidine standard ladder was first used to evaluate the three methods and showed zero orthogonality, where retention and selectivity were based on oligonucleotide charge/size under all three conditions. Next, a model 23-mer synthetic oligonucleotide containing 4 phosphorothioate bonds with 2' fluoro and 2'-O-methyl ribose modifications typical of small interfering RNA was used for evaluating orthogonality. The resolution and orthogonality were evaluated between the three modes of chromatography in terms of selectivity differences for nine common impurities, including truncations (n-1, n-2), addition (n + 1), oxidation, and de-fluorination. We first evaluated different ion-pairing reagents that provided the best separation of the key impurities while suppressing diastereomer separation due to phosphorothioate linkages. Although different ion-pairing reagents affected resolution, very little orthogonality was observed. We then compared the retention times between IP-RP, HILIC, and AEX for each impurity of the model oligonucleotide and observed various selectivity changes. The results suggest that coupling HILIC with either AEX or IP-RP provide the highest degree of orthogonality due to the differences in retention for hydrophilic nucleobases and modifications under HILIC conditions. IP-RP provided the highest overall resolution for the impurity mixture, whereas more co-elution was observed with HILIC and AEX. The unique selectivity patterns offered by HILIC provides an interesting alternative to IP-RP or AEX, in addition to the potential for coupling with multidimensional separations. Future work should explore orthogonality for oligonucleotides with subtle sequence differences such as nucleobase modifications and base flip isomers, longer strands such as guide RNA and messenger RNA, and other biotherapeutic modalities such as peptides, antibodies, and antibody-drug-conjugates.


Asunto(s)
Cromatografía de Fase Inversa , Oligonucleótidos , Oligonucleótidos/análisis , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Indicadores y Reactivos , Aniones , Interacciones Hidrofóbicas e Hidrofílicas
2.
J Chromatogr A ; 1687: 463707, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36516490

RESUMEN

Comprehensive characterization of the lipidome remains a challenge requiring development of new analytical approaches to expand lipid coverage in complex samples. In this work, offline two-dimensional liquid chromatography-mass spectrometry was investigated for lipidomics from human plasma. Hydrophilic interaction liquid chromatography was implemented in the first dimension to fractionate lipid classes. Nine fractions were collected and subjected to a second-dimension separation utilizing 50 cm capillary columns packed with 1.7 µm C18 particles operated on custom-built instrumentation at 35 kpsi. Online coupling with time-of-flight mass spectrometry allowed putative lipid identification from precursor-mass based library searching. The method had good orthogonality (fractional coverage of ∼40%), achieved a peak capacity of approximately 1900 in 600 min, and detected over 1000 lipids from a 5 µL injection of a human plasma extract while consuming less than 3 mL of solvent. The results demonstrate the expected gains in peak capacity when employing long columns and two-dimensional separations and illustrate practical approaches for improving lipidome coverage from complex biological samples.


Asunto(s)
Lipidómica , Lípidos , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos
3.
EMBO J ; 40(24): e106061, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34459015

RESUMEN

Non-neuronal cholinergic signaling, mediated by acetylcholine, plays important roles in physiological processes including inflammation and immunity. Our group first discovered evidence of non-neuronal cholinergic circuitry in adipose tissue, whereby immune cells secrete acetylcholine to activate beige adipocytes during adaptive thermogenesis. Here, we reveal that macrophages are the cellular protagonists responsible for secreting acetylcholine to regulate thermogenic activation in subcutaneous fat, and we term these cells cholinergic adipose macrophages (ChAMs). An adaptive increase in ChAM abundance is evident following acute cold exposure, and macrophage-specific deletion of choline acetyltransferase (ChAT), the enzyme for acetylcholine biosynthesis, impairs the cold-induced thermogenic capacity of mice. Further, using pharmacological and genetic approaches, we show that ChAMs are regulated via adrenergic signaling, specifically through the ß2 adrenergic receptor. These findings demonstrate that macrophages are an essential adipose tissue source of acetylcholine for the regulation of adaptive thermogenesis, and may be useful for therapeutic targeting in metabolic diseases.


Asunto(s)
Acetilcolina/metabolismo , Colina O-Acetiltransferasa/genética , Macrófagos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Grasa Subcutánea/citología , Animales , Células Cultivadas , Frío , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Cultivo Primario de Células , Grasa Subcutánea/metabolismo , Termogénesis
4.
Artículo en Inglés | MEDLINE | ID: mdl-34365292

RESUMEN

Most medications prescribed to neonatal patients are off-label uses. The pharmacokinetics and pharmacodynamics of drugs differ significantly between neonates and adults. Therefore, personalized pharmacotherapy guided by therapeutic drug monitoring (TDM) and drug response biomarkers are particularly beneficial to neonatal patients. Herein, we developed a capillary LC-MS/MS metabolomics method using a SWATH-based data-independent acquisition strategy for simultaneous targeted and untargeted metabolomics analysis of neonatal plasma samples. We applied the method to determine the global plasma metabolomics profiles and quantify the plasma concentrations of five drugs commonly used in neonatal intensive care units, including ampicillin, caffeine, fluconazole, vancomycin, and midazolam and its active metabolite α-hydroxymidazolam, in neonatal patients. The method was successfully validated and found to be suitable for the TDM of the drugs of interest. Moreover, the global metabolomics analysis revealed plasma metabolite features that could differentiate preterm and full-term neonates. This study demonstrated that the SWATH-based capillary LC-MS/MS metabolomics approach could be a powerful tool for simultaneous TDM and the discovery of neonatal plasma metabolite biomarkers.


Asunto(s)
Cromatografía Liquida/métodos , Monitoreo de Drogas/métodos , Metabolómica/métodos , Preparaciones Farmacéuticas/sangre , Espectrometría de Masas en Tándem/métodos , Biomarcadores/sangre , Humanos , Recién Nacido , Metaboloma
5.
J Chromatogr A ; 1635: 461706, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33229007

RESUMEN

LC-MS is an important tool for metabolomics due its high sensitivity and broad metabolite coverage. The goal of improving resolution and decreasing analysis time in HPLC has led to the use of 5 - 15 cm long columns packed with 1.7 - 1.9 µm particles requiring pressures of 8 - 12 kpsi. We report on the potential for capillary LC-MS based metabolomics utilizing porous C18 particles down to 1.1 µm diameter and columns up to 50 cm long with an operating pressure of 35 kpsi. Our experiments show that it is possible to pack columns with 1.1 µm porous particles to provide predicted improvements in separation time and efficiency. Using kinetic plots to guide the choice of column length and particle size, we packed 50 cm long columns with 1.7 µm particles and 20 cm long columns with 1.1 µm particles, which should produce equivalent performance in shorter times. Columns were tested by performing isocratic and gradient LC-MS analyses of small molecule metabolites and extracts from plasma. These columns provided approximately 100,000 theoretical plates for metabolite standards and peak capacities over 500 in 100 min for a complex plasma extract with robust interfacing to MS. To generate a given peak capacity, the 1.1 µm particles in 20 cm columns required roughly 75% of the time as 1.7 µm particles in 50 cm columns with both operated at 35 kpsi. The 1.1 µm particle packed columns generated a given peak capacity nearly 3 times faster than 1.7 µm particles in 15 cm columns operated at ~10 kpsi. This latter condition represents commercial state of the art for capillary LC. To consider practical benefits for metabolomics, the effect of different LC-MS variables on mass spectral feature detection was evaluated. Lower flow rates (down to 700 nL/min) and larger injection volumes (up to 1 µL) increased the features detected with modest loss in separation performance. The results demonstrate the potential for fast and high resolution separations for metabolomics using 1.1 µm particles operated at 35 kpsi for capillary LC-MS.


Asunto(s)
Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Metabolómica/métodos , Cinética , Metabolómica/instrumentación , Tamaño de la Partícula , Porosidad
6.
Proteomics ; 20(24): e2000175, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33085175

RESUMEN

Multidimensional fractionation-based enrichment methods improve the sensitivity of proteomic analysis for low-abundance proteins. However, a major limitation of conventional multidimensional proteomics is the extensive labor and instrument time required for analyzing many fractions obtained from the first dimension separation. Here, a fraction prediction algorithm-assisted 2D LC-based parallel reaction monitoring-mass spectrometry (FRACPRED-2D-PRM) approach for measuring low-abundance proteins in human plasma is presented. Plasma digests are separated by the first dimension high-pH RP-LC with data-dependent acquisition (DDA). The FRACPRED algorithm is then usedto predict the retention times of undetectable target peptides according to those of other abundant plasma peptides during the first dimension separation. Fractions predicted to contain target peptides are analyzed by the second dimension low-pH nano RP-LC PRM. The accuracy and robustness of fraction prediction with the FRACPRED algorithm are demonstrated by measuring two low-abundance proteins, aldolase B and carboxylesterase 1, in human plasma. The FRACPRED-2D-PRM proteomics approach demonstrates markedly improved efficiency and sensitivity over conventional 2D-LC proteomics assays. It is expected that this approach will be widely used in the study of low-abundance proteins in plasma and other complex biological samples.


Asunto(s)
Péptidos , Proteómica , Algoritmos , Cromatografía Liquida , Humanos , Espectrometría de Masas
7.
Trends Analyt Chem ; 1242020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32382203

RESUMEN

Continued improvements in HPLC have led to faster and more efficient separations than previously possible. One important aspect of these improvements has been the increase in instrument operating pressure and the advent of ultrahigh pressure LC (UHPLC). Commercial instrumentation is now capable of up to ~20 kpsi, allowing fast and efficient separations with 5-15 cm columns packed with sub-2 µm particles. Home-built instruments have demonstrated the benefits of even further increases in instrument pressure. The focus of this review is on recent advancements and applications in liquid chromatography above 20 kpsi. We outline the theory and advantages of higher pressure and discuss instrument hardware and design capable of withstanding 20 kpsi or greater. We also overview column packing procedures and stationary phase considerations for HPLC above 20 kpsi, and lastly highlight a few recent applicatioob pressure instruments for the analysis of complex mixtures.

8.
Mol Metab ; 32: 148-159, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029224

RESUMEN

OBJECTIVE: Post-bariatric surgery hypoglycemia (PBH) is defined as the presence of neuroglycopenic symptoms accompanied by postprandial hypoglycemia in bariatric surgery patients. Recent clinical studies using continuous glucose monitoring (CGM) technology revealed that PBH is more frequently observed in vertical sleeve gastrectomy (VSG) patients than previously recognized. PBH cannot be alleviated by current medication. Therefore, a model system to investigate the mechanism and treatment is required. METHODS: We used CGM in a rat model of VSG and monitored the occurrence of glycemic variability and hypoglycemia in various meal conditions for 4 weeks after surgery. Another cohort of VSG rats with CGM was used to investigate whether the blockade of glucagon-like peptide-1 receptor (GLP-1R) signaling alleviates these symptoms. A mouse VSG model was used to investigate whether the impaired glucose counterregulatory system causes postprandial hypoglycemia. RESULTS: Like in humans, rats have increased glycemic variability and hypoglycemia after VSG. Postprandial hypoglycemia was specifically detected after liquid versus solid meals. Further, the blockade of GLP-1R signaling raises the glucose nadir but does not affect glycemic variability. CONCLUSIONS: Rat bariatric surgery duplicates many features of human post-bariatric surgery hypoglycemia including postprandial hypoglycemia and glycemic variability, while blockade of GLP-1R signaling prevents hypoglycemia but not the variability.


Asunto(s)
Glucemia/metabolismo , Gastrectomía , Hipoglucemia/metabolismo , Hipoglucemia/cirugía , Animales , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Masculino , Ratas
9.
J Chromatogr A ; 1611: 460575, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31607445

RESUMEN

Improvements in sample preparation, separation, and mass spectrometry continue to expand the coverage in LC-MS based lipidomics. While longer columns packed with smaller particles in theory give higher separation performance compared to shorter columns, the implementation of this technology above commercial limits has been sparse due to difficulties in packing long columns and successfully operating instruments at ultrahigh pressures. In this work, a liquid chromatograph that operates up to 35 kpsi was investigated for the separation and identification of lipid species from human plasma. Capillary columns between 15-50 cm long were packed with 1.7 µm BEH C18 particles and evaluated for their ability to separate lipid isomers and complex lipid extracts from human plasma. Putative lipid class identifications were assigned using accurate mass and relative retention time data of the eluting peaks. Our findings indicate that longer columns packed and operated at 35 kpsi outperform shorter columns packed and run at lower pressures in terms of peak capacity and numbers of features identified. Packing columns with relatively high concentration slurries (200 mg/mL) while sonicating the column resulted in 6-34% increase in peak capacity for 50 cm columns compared to lower slurry concentrations and no sonication. For a given analysis time, 50 cm long columns operated at 35 kpsi provided a 20-95% increase in chromatographic peak capacity compared with 15 cm columns operated at 15 kpsi. Analysis times up to 4 h were evaluated, generating peak capacities up to 410 ±â€¯5 (n = 3, measured at 4σ) and identifying 480 ±â€¯85 lipids (n = 2). Importantly, the results also show a correlation between the peak capacity and the number of lipids identified from a human plasma extract. This correlation indicates that ionization suppression is a limiting factor in obtaining sufficient signal for identification by mass spectrometry. The result also shows that the higher resolution obtained by shallow gradients overcomes possible signal reduction due to broader, more dilute peaks in long gradients for improving detection of lipids in LC-MS. Lastly, longer columns operated at shallow gradients allowed for the best separation of both regional and geometrical isomers. These results demonstrate a system that enables the advantages of using longer columns packed and run at ultrahigh pressure for improving lipid separations and lipidome coverage.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Lipidómica/métodos , Lípidos/química , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/instrumentación , Humanos , Lipidómica/instrumentación , Lípidos/sangre , Espectrometría de Masas/instrumentación , Sonicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...