Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Free Radic Biol Med ; 118: 44-58, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29471108

RESUMEN

Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-ß signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-ß, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1C1039G/+-Nox4-/-). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1C1039G/+-Nox4-/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1C1039G/+-Nox4-/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H2O2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function.


Asunto(s)
Aneurisma de la Aorta/metabolismo , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo/fisiología , Adulto , Animales , Aneurisma de la Aorta/etiología , Femenino , Humanos , Masculino , Síndrome de Marfan/complicaciones , Ratones , Ratones Noqueados , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Oxidación-Reducción , Adulto Joven
3.
Metab Brain Dis ; 31(3): 579-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26666246

RESUMEN

Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Estrés Oxidativo/fisiología , Fosfato de Piridoxal/metabolismo , Adulto , Anciano , Animales , Cistationina/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Adulto Joven
4.
Biochim Biophys Acta ; 1833(8): 2004-15, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23481038

RESUMEN

Within Saccharomyces cerevisiae, Hcm1is a member of the forkhead transcription factor family with a role in chromosome organization. Our group recently described its involvement in mitochondrial biogenesis and stress resistance, and reports here that Hcm1 played a role in adaptation to respiratory metabolism when glucose or nitrogen was decreased. Regulation of Hcm1 activity occurs in at least three ways: i) protein quantity, ii) subcellular localization, and iii) transcriptional activity. Transcriptional activity was measured using a reporter gene fused to a promoter that contains a binding site for Hcm1. We also analyzed the levels of several genes whose expression is known to be regulated by Hcm1 levels and the role of the main kinases known to respond to nutrients. Lack of sucrose-nonfermenting (Snf1) kinase increases cytoplasmic localization of Hcm1, whereas Δtor1 cells showed a mild increase in nuclear Hcm1. In vitro experiments showed that Snf1 clearly phosphorylates Hcm1 while Sch9 exerts a milder phosphorylation. Although in vitroTor1 does not directly phosphorylate Hcm1, in vivo rapamycin treatment increases nuclear Hcm1. We conclude that Hcm1 participates in the adaptation of cells from fermentation to respiratory metabolism during nutrient scarcity. According to our hypothesis, when nutrient levels decrease, Snf1 phosphorylates Hcm1. This results in a shift from the cytoplasm to the nucleus and increased transcriptional activity of genes involved in respiration, use of alternative energy sources, NAD synthesis and oxidative stress resistance.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Alimentos , Factores de Transcripción Forkhead/genética , Glucosa/genética , Glucosa/metabolismo , Nitrógeno/metabolismo , Estrés Oxidativo/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sacarosa/metabolismo , Transcripción Genética
5.
Biofactors ; 38(3): 173-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22473822

RESUMEN

Huntington disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene, affecting initially the striatum and progressively the cortex. Oxidative stress, and consequent protein oxidation, has been described as important to disease progression. This review focuses on recent advances in the field, with a particular emphasis on the identified target proteins and the role that their oxidation has or might have in the pathophysiology of HD. Oxidation and the resulting inactivation and/or degradation of important proteins can explain the impairment of several metabolic pathways in HD. Oxidation of enzymes involved in ATP synthesis can account for the energy deficiency observed. Impairment of protein folding and degradation can be due to oxidation of several heat shock proteins and Valosin-containing protein. Oxidation of two enzymes involved in the vitamin B6 metabolism could result in decreased availability of pyridoxal phosphate, which is a necessary cofactor in transaminations, the kynurenine pathway and the synthesis of glutathione, GABA, dopamine and serotonin, all of which have a key role in HD pathology. In addition, protein oxidation often contributes to oxidative stress, aggravating the molecular damage inside the cell.


Asunto(s)
Enfermedad de Huntington/metabolismo , Adenosina Trifosfatasas/metabolismo , Amidohidrolasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dopamina/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Enfermedad de Huntington/genética , Mutación , Oxidación-Reducción , Estrés Oxidativo , Pliegue de Proteína , Proteína que Contiene Valosina , Vitamina B 6/metabolismo
6.
Arch Biochem Biophys ; 510(1): 27-34, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21513696

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by expansion of CAG trinucleotide repeats, leading to an elongated polyglutamine sequence (polyQ) in the huntingtin protein. Misfolding of mutant polyQ proteins with expanded tracts results in aggregation, causing cytotoxicity. Oxidative stress in HD has been documented in humans as important to disease progression. Using yeast cells as a model of HD, we report that when grown at high glucose concentration, cells expressing mutant polyQ do not show apparent oxidative stress. At higher cell densities, when glucose becomes limiting and cells are metabolically shifting from fermentation to respiration, protein oxidation and catalase activity increases in relation to the length of the polyQ tract. Oxidative stress, either endogenous as a result of mutant polyQ expression or exogenously generated, increases Sir2 levels. Δ sir2 cells expressing expanded polyQ lengths show signs of oxidative stress even at the early exponential phase. In a wild-type background, isonicotinamide, a Sir2 activator, decreases mutant polyQ aggregation and the stress generated by expanded polyQ. Taken together, these results describe mutant polyQ proteins as being more toxic in respiring cells, causing oxidative stress and an increase in Sir2 levels. Activation of Sir2 would play a protective role against this toxicity.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Mutación , Péptidos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Niacinamida/farmacología , Estrés Oxidativo , Péptidos/metabolismo
7.
J Biol Chem ; 285(47): 37092-101, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20847055

RESUMEN

In Saccharomyces cerevisiae, the forkhead transcription factor Hcm1 is involved in chromosome segregation, spindle pole dynamics, and budding. We found that Hcm1 interacts with the histone deacetylase Sir2 and shifts from cytoplasm to the nucleus in the G(1)/S phase or in response to oxidative stress stimuli. The nuclear localization of Hcm1 depends on the activity of Sir2 as revealed by activators and inhibitors of the sirtuins and the Δsir2 mutant. Hcm1-overexpressing cells display more mitochondria that can be attributed to increased amounts of Abf2, a protein involved in mitochondrial biogenesis. These cells also show higher rates of oxygen consumption and improved resistance to oxidative stress that would be explained by increased catalase and Sod2 activities and molecular chaperones such as Hsp26, Hsp30, and members of Hsp70 family. Microarray analyses also reveal increased expression of genes involved in mitochondrial energy pathways and those allowing the transition from the exponential to the stationary phase. Taken together, these results describe a new and relevant role of Hcm1 for mitochondrial functions, suggesting that this transcription factor would participate in the adaptation of cells from fermentative to respiratory metabolism.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Mitocondrias/fisiología , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Biomarcadores/metabolismo , Western Blotting , Catalasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Proteínas del Choque Térmico HSP30/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Superóxido Dismutasa/metabolismo , Factores de Transcripción/metabolismo
8.
Microbiology (Reading) ; 153(Pt 11): 3667-3676, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17975074

RESUMEN

Alcohol dehydrogenase 1 (Adh1)p catalyses the conversion of acetaldehyde to ethanol, regenerating NAD+. In Saccharomyces cerevisiae, Adh1p is oxidatively modified during ageing and, consequently, its activity becomes reduced. To analyse whether maintaining this activity is advantageous for the cell, a yeast strain with an extra copy of the ADH1 gene (2xADH1) was constructed, and the effects on chronological and replicative ageing were analysed. The strain showed increased survival in stationary phase (chronological ageing) due to induction of antioxidant enzymes such as catalase and superoxide dismutases. In addition, 2xADH1 cells displayed an increased activity of silent information regulator 2 (Sir2)p, an NAD+-dependent histone deacetylase, due to a higher NAD+/NADH ratio. As a consequence, a 30% extension in replicative life span was observed. Taken together, these results suggest that the maintenance of enzymes that participate in NAD+/NADH balancing is important to chronological and replicative life-span parameters.


Asunto(s)
Alcohol Deshidrogenasa/genética , Dosificación de Gen , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Alcohol Deshidrogenasa/metabolismo , Medios de Cultivo , Etanol/metabolismo , Respuesta al Choque Térmico , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...