Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
J Hum Evol ; 189: 103512, 2024 04.
Article En | MEDLINE | ID: mdl-38461589

Neanderthal anterior teeth are very large and have a distinctive morphology characterized by robust 'shovel-shaped' crowns. These features are frequently seen as adaptive responses in dissipating heavy mechanical loads resulting from masticatory and non-masticatory activities. Although the long-standing debate surrounding this hypothesis has played a central role in paleoanthropology, is still unclear if Neanderthal anterior teeth can resist high mechanical loads or not. A novel way to answer this question is to use a multidisciplinary approach that considers together tooth architecture, dental wear and jaw movements. The aim of this study is to functionally reposition the teeth of Le Moustier 1 (a Neanderthal adolescent) and Qafzeh 9 (an early Homo sapiens adolescent) derived from wear facet mapping, occlusal fingerprint analysis and physical dental restoration methods. The restored dental arches are then used to perform finite element analysis on the left central maxillary incisor during edge-to-edge occlusion. The results show stress distribution differences between Le Moustier 1 and Qafzeh 9, with the former displaying higher tensile stress in enamel around the lingual fossa but lower concentration of stress in the lingual aspect of the root surface. These results seem to suggest that the presence of labial convexity, lingual tubercle and of a large root surface in Le Moustier 1 incisor helps in dissipating mechanical stress. The absence of these dental features in Qafzeh 9 is compensated by the presence of a thicker enamel, which helps in reducing the stress in the tooth crown.


Neanderthals , Humans , Adolescent , Animals , Incisor , Computer Simulation , Finite Element Analysis , Crowns , Stress, Mechanical
2.
J Anat ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38361247

Entheses are acknowledged as skeletal markers capable of revealing several biological and behavioral aspects of past individuals and populations. However, entheseal changes (ECs) of juvenile individuals have not yet been studied with a systematic approach. This contribution aims at investigating the morphological changes occurring at the femoral insertion of the gluteus maximus and tibial origin of the soleus muscles to highlight a potential link between the morphological features of those entheses and skeletal maturity in relation to sex, age, and locomotor developmental patterns. The sample consisted of 119 skeletons (age-at-death: 0-30 years) belonging to the Documented Human Skeletal Collection of the Certosa Cemetery (Bologna, Italy). The entheseal variation during the last stages of skeletal maturation in young adults was assessed using existing recording standards. A recording protocol for each enthesis was developed for immature individuals to subdivide the morphological variability into discrete categories. Univariate, bivariate, and multivariate statistical analyses were performed to investigate the variation of entheseal morphologies and measurements in relation to bone metrics, degree of epiphyseal closure, sex, age, and locomotor developmental patterns. A statistically significant relationship was observed between ECs morphological patterns and age for both entheses, while sexual differences were negligible. A relationship between ECs morphological pattern and locomotor milestones emerged only for the gluteus maximus. Even though further testing is needed on other documented skeletal collections, our protocol could be usefully applied in forensic and archaeological fields and serving as important reference for evolutionary investigations.

3.
PLoS One ; 18(10): e0293090, 2023.
Article En | MEDLINE | ID: mdl-37851635

The Iron Age is characterized by an extended interweaving of movements by Celts in Europe. Several waves of Celts from Western and Central Europe migrated southeast and west from the core area of the La Téne culture (between Bourgogne and Bohemia). Through the analysis of non-metric dental traits, this work aims to understand the biological relationship among Celtic groups arrived in Italy and the Carpathian Basin, as well as between local populations and Celtic newcomers. A total of 10 non-metric dental traits were analyzed to evaluate biological affinities among Celts (Sopron-Krautacker and Pilismarót-Basaharc) and Scythians-related populations from Hungary (Tápiószele), Celts from continental Europe (Switzerland and Austria), two Iron Age Etruscan-Celtic sites from northern Italy (Monterenzio Vecchio and Monte Bibele), 13 Iron Age central-southern Italic necropolises, and the northern Italian Bronze Age necropolis of Scalvinetto. Strontium isotopes were measured on individuals from the necropolis of Monte Bibele to infer their local or non-local origin. Results highlight the existence of statistically significant differences between Celts and autochthonous Italian groups. Celtic groups from Hungary and Italy (i.e., non-local individuals of Monterenzio Vecchio and Monte Bibele) share a similar biological background, supporting the historical records mentioning a common origin for Celts migrated to the eastern and southern borders of today's Europe. The presence of a supposed Steppean ancestry both in Celts from Hungary and Celts from northern Italy corroborates the hypothesis of the existence of a westward migration of individuals and genes from the Steppe towards northern Italy during the Bronze and Iron Age, which contributed to the biological variability of pre-Celtic and later Celtic populations, respectively. Conversely, individuals from central-southern Italy show an autochthonous pre-Iron Age background. Lastly, this work supports the existence of Celtic migratory routes in northern Italy, as shown by biological and cultural admixture between Celts and Italics living together.


Phenotype , Humans , Hungary , Italy , Europe , Austria
4.
Commun Biol ; 6(1): 1061, 2023 10 19.
Article En | MEDLINE | ID: mdl-37857853

The evolution of the medial longitudinal arch (MLA) is one of the most impactful adaptations in the hominin foot that emerged with bipedalism. When and how it evolved in the human lineage is still unresolved. Complicating the issue, clinical definitions of flatfoot in living Homo sapiens have not reached a consensus. Here we digitally investigate the navicular morphology of H. sapiens (living, archaeological, and fossil), great apes, and fossil hominins and its correlation with the MLA. A distinctive navicular shape characterises living H. sapiens with adult acquired flexible flatfoot, while the congenital flexible flatfoot exhibits a 'normal' navicular shape. All H. sapiens groups differentiate from great apes independently from variations in the MLA, likely because of bipedalism. Most australopith, H. naledi, and H. floresiensis navicular shapes are closer to those of great apes, which is inconsistent with a human-like MLA and instead might suggest a certain degree of arboreality. Navicular shape of OH 8 and fossil H. sapiens falls within the normal living H. sapiens spectrum of variation of the MLA (including congenital flexible flatfoot and individuals with a well-developed MLA). At the same time, H. neanderthalensis seem to be characterised by a different expression of the MLA.


Flatfoot , Hominidae , Adult , Animals , Humans , Hominidae/anatomy & histology , Foot/anatomy & histology , Fossils
5.
Archaeol Anthropol Sci ; 15(3): 36, 2023.
Article En | MEDLINE | ID: mdl-36874257

The present study examines the prehistoric human skeletal remains retrieved starting from the 1920s in the deposit of the Farneto rock shelter, situated in the area of the 'Parco dei Gessi Bolognesi e Calanchi dell'Abbadessa' (San Lazzaro di Savena, Bologna, northern Italy). An exact dating and a reliable interpretation of the assemblage had not been reached so far because of the lack of contextual data useful for dating purposes, the inaccurate recovery procedures of the remains and their state of preservation. In fact, the skeletal remains from the Farneto rock shelter are highly fragmented and commingled, whereas reliable information about their original position and their recovery procedures are not available. Despite these difficulties, radiocarbon analyses allowed the precise dating of the remains to a final phase of the Neolithic and an early phase of the Eneolithic period in Emilia Romagna (northern Italy). The study of the assemblage enabled to clarify the use of the context for funerary purposes. Moreover, the anthropological and taphonomic analyses of the skeletal remains shed light on the biological profile of the individuals and on some events that occurred after their death. In particular, the analysis of perimortem lesions highlighted the existence of intentional interventions related to corpse treatment, referable to dismembering/disarticulation and scarnification, i.e. cleaning of bones from soft tissues. Finally, the comparison with other Italian and European Neo/Eneolithic funerary contexts enabled a better understanding of these complex ritual practices. Supplementary Information: The online version contains supplementary material available at 10.1007/s12520-023-01727-2.

6.
Anat Rec (Hoboken) ; 306(1): 124-142, 2023 01.
Article En | MEDLINE | ID: mdl-35656925

OBJECTIVE: The development of bipedalism is a very complex activity that contributes to shaping the anatomy of the foot. The talus, which starts ossifying in utero, may account for the developing stages from the late gestational phase onwards. Here, we explore the early development of the talus in both its internal and external morphology to broaden the knowledge of the anatomical changes that occur during early development. MATERIALS AND METHODS: The sample consists of high-resolution microCT scans of 28 modern juvenile tali (from 36 prenatal weeks to 2 years), from a broad chronological range from the Late Roman period to the 20th century. We applied geometric morphometric and whole-bone trabecular analysis to investigate the early talar morphological changes. RESULTS: In the youngest group (<6 postnatal months), the immature external shell is accompanied by an isotropic internal structure, with thin and densely packed trabeculae. After the initial attempts of locomotion, bone volume fraction decreases, while anisotropy and trabecular thickness increase. These internal changes correspond to the maturation of the external shell, which is now more defined and shows the development of the articular surfaces. DISCUSSION: The internal and external morphology of the human talus reflects the diverse load on the foot during the initial phases of the bipedal locomotion, with the youngest group potentially reflecting the lack of readiness of the human talus to bear forces and perform bipedal walking. These results highlight the link between mechanical loading and bone development in the human talus during the acquisition of bipedalism, providing new insight into the early phases of talar development.


Walking , Humans , X-Ray Microtomography
7.
Biology (Basel) ; 11(7)2022 Jul 19.
Article En | MEDLINE | ID: mdl-36101455

Fibular metric variations have revealed their potential in distinguishing between males and females; however the fibula remains scarcely analyzed in studies of sexual dimorphism. This work aims at investigating sexually dimorphic features in fibular proximal and distal epiphyses through geometric morphometrics methods. A total of 136 left fibulae, from two Italian and one South African identified skeletal collections were virtually acquired through CT and laser scanning and analyzed using geometric morphometric methods. Statistical analyses were performed on shape, form, and size variables. Results show that fibular epiphyses are smaller with narrower articular surfaces in females than in males in both extremities. Relevant sexual differences emerge in fibular form and size for the two Italian samples but not for the South African one, likely for its small sample size. Discriminant analysis on form principal components (PCs) offers accuracy above 80% when the samples are pooled, and reaches accuracy of 80-93% when the Italian samples are considered separately. However, our method on form PCs was not successful for the South African sample (50-53% accuracy), possibly due to the small sample size. These results show relevant morphological variation in relation to fibular form and size, with a degree of accuracy that indicates the utility of the present method for sexing human fibulae in both forensic and bioarchaeological contexts for Italian samples.

8.
Front Cell Infect Microbiol ; 12: 990312, 2022.
Article En | MEDLINE | ID: mdl-36118045

Bacterial drug resistance is one of the major challenges to present and future human health, as the continuous selection of multidrug resistant bacteria poses at serious risk the possibility to treat infectious diseases in the near future. One of the infection at higher risk to become incurable is tuberculosis, due to the few drugs available in the market against Mycobacterium tuberculosis. Drug resistance in this species is usually due to point mutations in the drug target or in proteins required to activate prodrugs. However, another interesting and underexplored aspect of bacterial physiology with important impact on drug susceptibility is represented by the changes in transcriptional regulation following drug exposure. The main regulators involved in this phenomenon in M. tuberculosis are the sigma factors, and regulators belonging to the WhiB, GntR, XRE, Mar and TetR families. Better understanding the impact of these regulators in survival to drug treatment might contribute to identify new drug targets and/or to design new strategies of intervention.


Mycobacterium tuberculosis , Prodrugs , Tuberculosis, Lymph Node , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Regulation , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Prodrugs/metabolism
9.
J Anat ; 241(3): 667-682, 2022 09.
Article En | MEDLINE | ID: mdl-35751880

This work aims to test accuracy and comparability of 3D models of human skeletal fibulae generated by clinical CT and laser scanner virtual acquisitions. Mesh topology, segmentation and smoothing protocols were tested to assess variation among meshes generated with different scanning methods and procedures, and to evaluate meshes-interchangeability in 3D geometric morphometric analysis. A sample of 13 left human fibulae were scanned separately with Revolution Discovery CT dual energy (0.625 mm resolution) and ARTEC Space Spider 3D structured light laser scanner (0.1 mm resolution). Different segmentation methods, including half-maximum height (HMH) and MIA-clustering protocols, were compared to their high-resolution standard generated with laser-scanner by calculating topological surface deviations. Different smoothing algorithms were also evaluated, such as Laplacian and Taubin smoothing. A total of 142 semilandmarks were used to capture the shape of both proximal and distal fibular epiphyses. After Generalized Procrustes superimposition, the Procrustes coordinates of the proximal and distal fibular epiphyses were used separately to assess variation due to scanning methods and the operator error. Smoothing algorithms at low iteration do not provide significant variation among reconstructions, but segmentation protocol may influence final mesh quality (0.09-0.24 mm). Mean deviation among CT-generated meshes that were segmented with MIA-clustering protocol, and laser scanner-generated ones, is optimal (0.42 mm, ranging 0.35-0.56 mm). Principal component analysis reveals that homologous samples scanned with the two methods cluster together for both the proximal and distal fibular epiphyses. Similarly, Procrustes ANOVA reveals no shape differences between scanning methods and replicates, and only 1.38-1.43% of shape variation is due to scanning device. Topological similarities support the comparability of CT- and laser scanner-generated meshes and validate its simultaneous use in shape analysis with potential clinical relevance. We precautionarily suggest that dedicated trials should be performed in each study when merging different data sources prior to analyses.


Musculoskeletal System , Tomography, X-Ray Computed , Algorithms , Fibula , Humans , Imaging, Three-Dimensional/methods , Lasers
10.
Sci Rep ; 12(1): 8104, 2022 05 16.
Article En | MEDLINE | ID: mdl-35577834

We present the results of a multi-disciplinary investigation on a deciduous human tooth (Pradis 1), recently recovered from the Epigravettian layers of the Grotte di Pradis archaeological site (Northeastern Italian Prealps). Pradis 1 is an exfoliated deciduous molar (Rdm2), lost during life by an 11-12-year-old child. A direct radiocarbon date provided an age of 13,088-12,897 cal BP (95% probability, IntCal20). Amelogenin peptides extracted from tooth enamel and analysed through LC-MS/MS indicate that Pradis 1 likely belonged to a male. Time-resolved 87Sr/86Sr analyses by laser ablation mass spectrometry (LA-MC-ICPMS), combined with dental histology, were able to resolve his movements during the first year of life (i.e. the enamel mineralization interval). Specifically, the Sr isotope ratio of the tooth enamel differs from the local baseline value, suggesting that the child likely spent his first year of life far from Grotte di Pradis. Sr isotopes are also suggestive of a cyclical/seasonal mobility pattern exploited by the Epigravettian human group. The exploitation of Grotte di Pradis on a seasonal, i.e. summer, basis is also indicated by the faunal spectra. Indeed, the nearly 100% occurrence of marmot remains in the entire archaeozoological collection indicates the use of Pradis as a specialized marmot hunting or butchering site. This work represents the first direct assessment of sub-annual movements observed in an Epigravettian hunter-gatherer group from Northern Italy.


Archaeology , Tandem Mass Spectrometry , Archaeology/methods , Child , Chromatography, Liquid , Humans , Isotopes , Italy , Male
11.
Am J Biol Anthropol ; 179(1): 18-30, 2022 09.
Article En | MEDLINE | ID: mdl-36790758

OBJECTIVES: During the middle-to-upper Paleolithic transition (50,000 and 40,000 years ago), interaction between Neanderthals and Homo sapiens varied across Europe. In southern Italy, the association between Homo sapiens fossils and non-Mousterian material culture, as well as the mode and tempo of Neanderthal demise, are still vividly debated. In this research, we focus on the study of two human teeth by using 3D geometric morphometric approaches for a reliable taxonomical attribution as well as obtaining new radiometric dates on the archeological sequence. MATERIAL AND METHODS: This work presents two lower deciduous molars uncovered at Roccia San Sebastiano (Mondragone-Caserta, Italy), stratigraphically associated with Mousterian (RSS1) and Uluzzian (RSS2) artifacts. To obtain a probabilistic attribution of the two RSS teeth to each reference taxa group composed of Neanderthals and Homo sapiens, we performed and compared the performance of three supervised learning algorithms (flexible discriminant analysis, multiadaptive regression splines, and random forest) on both crown and cervical outlines obtained by virtual morphometric methods. RESULTS: We show that RSS1, whose Mousterian context appears more recent than 44,800-44,230 cal BP, can be attributed to a Neanderthal, while RSS2, found in an Uluzzian context that we dated to 42,640-42,380 cal BP, is attributed to Homo sapiens. DISCUSSION: This site yields the most recent direct evidence for a Neanderthal presence in southern Italy and confirms a later shift to upper Paleolithic technology in southwestern Italy compared to the earliest Uluzzian evidence at Grotta del Cavallo (Puglia, Italy).


Neanderthals , Humans , Animals , Italy , Europe , Tooth, Deciduous , Technology
12.
Interface Focus ; 11(5): 20200083, 2021 Oct 06.
Article En | MEDLINE | ID: mdl-34938433

Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo, suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P3) and molar (M2) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo. Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis.

13.
J Hum Evol ; 161: 103093, 2021 12.
Article En | MEDLINE | ID: mdl-34749003

Neanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H. sapiens (Upper Paleolithic and Holocene hunter-gatherers, agriculturalists, and postindustrial group) along with the Clark Howell talus (Omo, Ethiopia). Variation in external talar structures was assessed through geometric morphometric methods, while bone volume fraction and degree of anisotropy were quantified in a subsample (n = 45). Finally, covariation between point clouds of site-specific trabecular variables and surface landmark coordinates was assessed. Our results show that although Neanderthal talar external and internal morphologies were distinct from those of H. sapiens groups, shape did not significantly covary with either bone volume fraction or degree of anisotropy, suggesting limited covariation between external and internal talar structures. Neanderthal external talar morphology reflects ancestral retentions, along with various adaptations to high levels of mobility correlated to their presumably unshod hunter-gatherer lifestyle. This pairs with their high site-specific trabecular bone volume fraction and anisotropy, suggesting intense and consistently oriented locomotor loading, respectively. Relative to H.sapiens, Neanderthals exhibit differences in the talocrural joint that are potentially attributable to cultural and locomotor behavior dissimilarity, a talonavicular joint that mixes ancestral and functional traits, and a derived subtalar joint that suggests a predisposition for a pronated foot during stance phase. Overall, Neanderthal talar variation is attributable to mobility strategy and phylogenesis, while H. sapiens talar variation results from the same factors plus footwear. Our results suggest that greater Neanderthal body mass and/or higher mechanical stress uniquely led to their habitually pronated foot posture.


Neanderthals , Talus , Animals , Fossils , Humans , Phylogeny , Posture , Stress, Mechanical , Talus/anatomy & histology
14.
Am J Phys Anthropol ; 175(4): 847-864, 2021 08.
Article En | MEDLINE | ID: mdl-33973654

OBJECTIVES: Palate morphology is constantly changing throughout an individual's lifespan, yet its asymmetry during growth is still little understood. In this research, we focus on the study of palate morphology by using 3D geometric morphometric approaches to observe changes at different stages of life, and to quantify the impact of directional and fluctuating asymmetry on different areas at different growth stages. MATERIALS AND METHODS: The sample consists of 183 individuals (1-72 years) from two identified human skeletal collections of 19th and early 20th Century Italian contexts. A 3D-template of 41 (semi)landmarks was applied on digital palate models to observe morphological variation during growth. RESULTS: Asymmetrical components of the morphological structure appears multidirectional on the entire palate surface in individuals <2 years old and become oriented (opposite bilateral direction) between 2 and 6 years of age. Specifically, directional asymmetry differentially impacts palate morphology at different stages of growth. Both the anterior and posterior palate are affected by mild alterations in the first year of life, while between 2 and 6 years asymmetry is segregated in the anterior area, and moderate asymmetry affects the entire palatal surface up to 12 years of age. Our results show that stability of the masticatory system seems to be reached around 13-35 years first by females and then males. From 36 years on both sexes show similar asymmetry on the anterior area. Regarding fluctuating asymmetry, inter-individual variability is mostly visible up to 12 years of age, after which only directional trends can be clearly observed at a group level. DISCUSSION: Morphological structure appears instable during the first year of life and acquires an opposite asymmetric bilateral direction between 2 and 6 years of age. This condition has been also documented in adults; when paired with vertical alteration, anterior/posterior asymmetry seems to characterize palate morphology, which is probably due to mechanical factors during the lifespan. Fluctuating asymmetry is predominant in the first period of life due to a plausible relationship with the strength of morphological instability of the masticatory system. Directional asymmetry, on the other hand, shows that the patterning of group-level morphological change might be explained as a functional response to differential inputs (physiological forces, nutritive and non-nutritive habits, para-masticatory activity as well as the development of speech) in different growth stages. This research has implications with respect to medical and evolutionary fields. In medicine, palate morphology should be considered when planning orthodontic and surgical procedures as it could affect the outcome. As far as an evolutionary perspective is concerned the dominance of directional asymmetries in the masticatory system could provide information on dietary and cultural habits as well as pathological conditions in our ancestors.


Palate , Child, Preschool , Female , Humans , Male
15.
PLoS One ; 16(3): e0247306, 2021.
Article En | MEDLINE | ID: mdl-33657148

An isolated human cranium, dated to the early Eneolithic period, was discovered in 2015 at the top of a vertical shaft in the natural Marcel Loubens gypsum Cave (Bologna area, northern Italy). No other anthropological or archaeological remains were found inside the cave. In other caves of the same area anthropic and funerary use are attested from prehistory to more recent periods. We focused on investigating the circumstances surrounding the death of this individual, since the cranium shows signs of some lesions that appear to be the results of a perimortem manipulation probably carried out to remove soft tissues. Anthropological analyses revealed that the cranium belonged to a young woman. We analysed the taphonomic features and geological context to understand how and why the cranium ended up (accidentally or intentionally) in the cave. The analyses of both the sediments accumulated inside the cranium and the incrustations and pigmentation covering its outer surface suggested that it fell into the cave, drawn by a flow of water and mud, likely from the edges of a doline. The accidental nature of the event is also seemingly confirmed by some post-mortem lesions on the cranium. The comparison with other Eneolithic archaeological sites in northern Italy made it possible to interpret the find as likely being from a funerary or ritual context, in which corpse dismemberment (in particular the displacement of crania) was practiced.


Archaeology , Caves , Ceremonial Behavior , Skull , Female , Humans , Italy
16.
Crit Rev Microbiol ; 47(2): 224-239, 2021 Mar.
Article En | MEDLINE | ID: mdl-33476522

An emerging body of research is revealing the microbiota pivotal involvement in determining the health or disease state of several human niches, and that of vitamin D also in extra-skeletal regions. Nevertheless, much of the oral microbiota and vitamin D reciprocal impact in oropharyngeal squamous cell carcinogenesis (OPSCC) is still mostly unknown. On this premise, starting from an in-depth scientific bibliographic analysis, this narrative literature review aims to show a detailed view of the state of the art on their contribution in the pathogenesis of this cancer type. Significant differences in the oral microbiota species quantity and quality have been detected in OPSCC-affected patients; in particular, mainly high-risk human papillomaviruses (HR-HPVs), Fusobacterium nucleatum, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Candida spp. seem to be highly represented. Vitamin D prevents and fights infections promoted by the above identified pathogens, thus confirming its homeostatic function on the microbiota balance. However, its antimicrobial and antitumoral actions, well-described for the gut, have not been fully documented for the oropharynx yet. Deeper investigations of the mechanisms that link vitamin D levels, oral microbial diversity and inflammatory processes will lead to a better definition of OPSCC risk factors for the optimization of specific prevention and treatment strategies.


Bacteria/drug effects , Microbiota , Mouth/microbiology , Oropharyngeal Neoplasms/microbiology , Squamous Cell Carcinoma of Head and Neck/microbiology , Vitamin D/pharmacology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carcinogenesis/drug effects , Humans , Oropharyngeal Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/pathology
17.
J Hum Evol ; 142: 102747, 2020 05.
Article En | MEDLINE | ID: mdl-32240884

The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets. Distinctive suites of features are consistently present in all fossil hominins, despite the presence of substantial interspecific variation, suggesting a potential connection of these suites to bipedal gait. A modern human-like condition evolved in navicular and lateral malleolar facets early in the hominin lineage compared with other facets, which demonstrate more complex morphological variation within Homininae. Interestingly, navicular facet morphology of Australopithecus afarensis is derived in the direction of Homo, whereas more recent hominin species such as Australopithecus africanus and Australopithecus sediba retain more primitive states in this facet. Combining the navicular facet with the trochlea and the posterior calcaneal facet as a functional suite, however, distinguishes Australopithecus from Homo in that the medial longitudinal arch had not fully developed in the former. Our results suggest that a more everted foot and stiffer medial midtarsal region are adaptations that coincide with the emergence of bipedalism, whereas a high medial longitudinal arch emerges later in time, within Homo. This study provides novel insights into the emergence of talar morphological traits linked to bipedalism and its transition from a facultative to an obligate condition.


Biological Evolution , Hominidae/anatomy & histology , Hominidae/physiology , Locomotion , Talus/anatomy & histology , Animals , Female , Fossils/anatomy & histology , Gorilla gorilla/anatomy & histology , Gorilla gorilla/physiology , Humans , Male , Neanderthals/anatomy & histology , Neanderthals/physiology , Pan troglodytes/anatomy & histology , Pan troglodytes/physiology
18.
J Hum Evol ; 141: 102746, 2020 04.
Article En | MEDLINE | ID: mdl-32163763

Entheses have rarely been systematically studied in the field of human evolution. However, the investigation of their morphological variability (e.g., robusticity) could provide new insight into their evolutionary significance in the European Neanderthal populations. The aim of this work is to study the entheses and joint features of the lower limbs of El Sidrón Neanderthals (Spain; 49 ka), using standardized scoring methods developed on modern samples. Paleobiology, growth, and development of both juveniles and adults from El Sidrón are studied and compared with those of Krapina Neanderthals (Croatia, 130 ka) and extant humans. The morphological patterns of the gluteus maximus and vastus intermedius entheses in El Sidrón, Krapina, and modern humans differ from one another. Both Neanderthal groups show a definite enthesis design for the gluteus maximus, with little intrapopulation variability with respect to modern humans, who are characterized by a wider range of morphological variability. The gluteus maximus enthesis in the El Sidrón sample shows the osseous features of fibrous entheses, as in modern humans, whereas the Krapina sample shows the aspects of fibrocartilaginous ones. The morphology and anatomical pattern of this enthesis has already been established during growth in all three human groups. One of two and three of five adult femurs from El Sidrón and from Krapina, respectively, show the imprint of the vastus intermedius, which is absent among juveniles from those Neanderthal samples and in modern samples. The scant intrapopulation and the high interpopulation variability in the two Neanderthal samples is likely due to a long-term history of small, isolated populations with high levels of inbreeding, who also lived in different ecological conditions. The comparison of different anatomical entheseal patterns (fibrous vs. fibrocartilaginous) in the Neanderthals and modern humans provides additional elements in the discussion of their functional and genetic origin.


Lower Extremity/physiology , Muscle, Skeletal/growth & development , Musculoskeletal Development , Neanderthals/physiology , Animals , Female , Lower Extremity/growth & development , Male , Neanderthals/growth & development , Spain
19.
PLoS One ; 15(2): e0229255, 2020.
Article En | MEDLINE | ID: mdl-32059040

Sex determination is a pivotal step in forensic and bioarchaeological fields. Generally, scholars focus on metric or qualitative morphological features, but in the last few years several contributions have applied geometric-morphometric (GM) techniques to overcome limitations of traditional approaches. In this study, we explore sexual dimorphism in modern human tali from three early 20th century populations (Sassari and Bologna, Italy; New York, USA) at intra- and interspecific population levels using geometric morphometric (GM) methods. Statistical analyses were performed using shape, form, and size variables. Our results do not show significant differences in shape between males and females, either considering the pooled sample or the individual populations. Differences in talar morphology due to sexual dimorphism are mainly related to allometry, i.e. size-related changes of morphological traits. Discriminant function analysis using form space Principal Components and centroid size correctly classify between 87.7% and 97.2% of the individuals. The result is similar using the pooled sample or the individual population, except for a diminished outcome for the New York group (from 73.9% to 78.2%). Finally, a talus from the Bologna sample (not included in the previous analysis) with known sex was selected to run a virtual resection, followed by two digital reconstructions based on the mean shape of both the pooled sample and the Bologna sample, respectively. The reconstructed talus was correctly classified with a Ppost between 99.9% and 100%, demonstrating that GM is a valuable tool to cope with fragmentary tali, which is a common occurrence in forensic and bioarchaeological contexts.


Forensic Anthropology/methods , Sex Determination by Skeleton/methods , Talus/anatomy & histology , Discriminant Analysis , Female , Humans , Image Processing, Computer-Assisted , Male , Principal Component Analysis , Sex Characteristics
20.
Am J Phys Anthropol ; 171(3): 456-469, 2020 03.
Article En | MEDLINE | ID: mdl-31825095

OBJECTIVES: The primate talus is known to have a shape that varies according to differences in locomotion and substrate use. While the modern human talus is morphologically specialized for bipedal walking, relatively little is known on how its morphology varies in relation to cultural and environmental differences across time. Here we compare tali of modern human populations with different subsistence economies and lifestyles to explore how cultural practices and environmental factors influence external talar shape. MATERIALS AND METHODS: The sample consists of digital models of 142 tali from 11 archaeological and post-industrial modern human groups. Talar morphology was investigated through 3D (semi)landmark based geometric morphometric methods. RESULTS: Our results show distinct differences between highly mobile hunter-gatherers and more sedentary groups belonging to a mixed post-agricultural/industrial background. Hunter-gatherers exhibit a more "flexible" talar shape, everted posture, and a more robust and medially oriented talar neck/head, which we interpret as reflecting long-distance walking strictly performed barefoot, or wearing minimalistic footwear, along uneven ground. The talus of the post-industrial population exhibits a "stable" profile, neutral posture, and a less robust and orthogonally oriented talar neck/head, which we interpret as a consequence of sedentary lifestyle and use of stiff footwear. DISCUSSION: We suggest that talar morphological variation is related to the adoption of constraining footwear in post-industrial society, which reduces ankle range of motion. This contrasts with hunter-gatherers, where talar shape shows a more flexible profile, likely resulting from a lack of footwear while traversing uneven terrain. We conclude that modern human tali vary with differences in locomotor and cultural behavior.


Feeding Behavior , Motor Activity , Shoes , Talus/anatomy & histology , Adult , Africa , Aged , Archaeology , Europe , Female , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , Humans , Male , Middle Aged , North America , Shoes/history , Young Adult
...