Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Chemistry ; : e202400430, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818652

RESUMEN

BCL-2, a member of the BCL-2 protein family, is an antiapoptotic factor that regulates the intrinsic pathway of apoptosis. Due to its aberrant activity, it is frequently implicated in haematopoietic cancers and represents an attractive target for the development of therapeutics that antagonize its activity. A selective BCL-2 inhibitor, venetoclax, was approved for treating chronic lymphocytic leukaemia, acute myeloid leukemia, and other hematologic malignancies, validating BCL-2 as an anticancer target. Since then, alternative therapeutic approaches to modulate the activity of BCL-2 have been explored, such as antibody-drug conjugates and proteolysis-targeting chimeras. Despite numerous research groups focusing on developing degraders of BCL-2 family member proteins, selective BCL-2 PROTACs remain elusive, as disclosed compounds only show dual BCL-xL/BCL-2 degradation. Herein, we report our efforts to develop BCL-2 degraders by incorporating two BCL-2 binding moieties into chimeric compounds that aim to hijack one of three E3 ligases: CRBN, VHL, and IAPs. Even though our project did not result in obtaining a potent and selective BCL-2 PROTAC, our research will aid in understanding the narrow chemical space of BCL-2 degraders.

2.
ACS Omega ; 9(2): 2362-2382, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250345

RESUMEN

Toll-like receptors (TLRs) are components of innate immunity that play a crucial role in several diseases, including chronic inflammatory and infectious diseases, autoimmune diseases, and cancer. In particular, TLR7 has been identified as a key player in the innate immune response against viral infections and small-molecule TLR7 agonists have shown potential for vaccine therapy, for treatment of asthma and allergies, and as anticancer drugs. Inspired by our previous discovery of selective TLR7 agonists, our goal was to develop and introduce a new chemotype of TLR7 agonists by replacing the quinazoline ring with a new heterocycle isoxazolo[5,4-d]pyrimidine. Here, we report design, optimized synthesis, and structure-activity relationship studies of a novel class of TLR7 agonists based on the 6-(trifluoromethyl)isoxazolo[5,4-d]pyrimidine-4-amine scaffold that demonstrate high selectivity and low micromolar potencies. The best-in-class agonist 21a, with an EC50 value of 7.8 µM, also proved to be noncytotoxic and induced secretion of cytokines, including IL-1ß, IL-12p70, IL-8, and TNF-α, indicating its potential to modulate the immune response.

3.
J Med Chem ; 66(21): 14513-14543, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37902300

RESUMEN

Immunomodulatory imide drugs (IMiDs) such as thalidomide, pomalidomide, and lenalidomide are the most common cereblon (CRBN) recruiters in proteolysis-targeting chimera (PROTAC) design. However, these CRBN ligands induce the degradation of IMiD neosubstrates and are inherently unstable, degrading hydrolytically under moderate conditions. In this work, we simultaneously optimized physiochemical properties, stability, on-target affinity, and off-target neosubstrate modulation features to develop novel nonphthalimide CRBN binders. These efforts led to the discovery of conformationally locked benzamide-type derivatives that replicate the interactions of the natural CRBN degron, exhibit enhanced chemical stability, and display a favorable selectivity profile in terms of neosubstrate recruitment. The utility of the most potent ligands was demonstrated by their transformation into potent degraders of BRD4 and HDAC6 that outperform previously described reference PROTACs. Together with their significantly decreased neomorphic ligase activity on IKZF1/3 and SALL4, these ligands provide opportunities for the design of highly selective and potent chemically inert proximity-inducing compounds.


Asunto(s)
Quimera Dirigida a la Proteólisis , Ubiquitina-Proteína Ligasas , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ligandos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
4.
J Med Chem ; 66(18): 12776-12811, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37708384

RESUMEN

Hypoxia-inducible factor-1α (HIF-1α) constitutes the principal mediator of cellular adaptation to hypoxia in humans. The HIF-1α protein level and activity are tightly regulated by the ubiquitin E3 ligase von Hippel-Lindau (VHL). Here, we performed a structure-guided and bioactivity-driven design of new VHL inhibitors. Our iterative and combinatorial strategy focused on chemical variability at the phenylene unit and encompassed further points of diversity. The exploitation of tailored phenylene fragments and the stereoselective installation of the benzylic methyl group provided potent VHL ligands. Three high-resolution structures of VHL-ligand complexes were determined, and bioactive conformations of these ligands were explored. The most potent inhibitor (30) exhibited dissociation constants lower than 40 nM, independently determined by fluorescence polarization and surface plasmon resonance and an enhanced cellular potency, as evidenced by its superior ability to induce HIF-1α transcriptional activity. Our work is anticipated to inspire future efforts toward HIF-1α stabilizers and new ligands for proteolysis-targeting chimera (PROTAC) degraders.


Asunto(s)
Ubiquitina-Proteína Ligasas , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Ligandos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ubiquitina/metabolismo , Hipoxia
5.
Bioconjug Chem ; 34(7): 1271-1281, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37354098

RESUMEN

The binucleophilic properties of 1,2-aminothiol and its rare occurrence in nature make it a useful reporter for tracking molecules in living systems. The 1,2-aminothiol moiety is present in cysteine, which is a substrate for a biocompatible click reaction with heteroaromatic nitriles. Despite the wide range of applications for this reaction, the scope of nitrile substrates has been explored only to a limited extent. In this study, we expand the chemical space of heteroaromatic nitriles for bioconjugation under physiologically relevant conditions. We systematically assembled a library of 116 2-cyanobenzimidazoles, 1-methyl-2-cyanobenzimidazoles, 2-cyanobenzothiazoles, and 2-cyanobenzoxazoles containing electron-donating and electron-withdrawing substituents at all positions of the benzene ring. The compounds were evaluated for their stability, reactivity, and selectivity toward the N-terminal cysteine of model oligopeptides. In comparison to the benchmark 6-hydroxy-2-cyanobenzothiazole or 6-amino-2-cyanobenzothiazole, we provide highly selective and moderately reactive nitriles as well as highly reactive yet less selective analogs with a variety of enabling attachment chemistries to aid future applications in bioconjugation, chemical biology, and nanomaterial science.


Asunto(s)
Cisteína , Nitrilos , Cisteína/química , Nitrilos/química , Compuestos de Sulfhidrilo , Oligopéptidos , Química Clic
6.
Antiviral Res ; 216: 105655, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37355023

RESUMEN

The severity of the SARS-CoV-2 pandemic and the recurring (re)emergence of viruses prompted the development of new therapeutic approaches that target viral and host factors crucial for viral infection. Among them, host peptidases cathepsins B and L have been described as essential enzymes during SARS-CoV-2 entry. In this study, we evaluated the effect of potent selective cathepsin inhibitors as antiviral agents. We demonstrated that selective cathepsin B inhibitors, such as the antimicrobial agent nitroxoline and its derivatives, impair SARS-CoV-2 infection in vitro. Antiviral activity observed at early stage of virus entry was cell-type dependent and correlated well with the intracellular content and enzymatic function of cathepsins B or L. Furthermore, tested inhibitors were effective against the ancestral SARS-CoV-2 D614 as well as against the more recent BA.1_4 (Omicron). Taken together, our results highlight the important role of host cysteine cathepsin B in SARS-CoV-2 virus entry and show that cathepsin-specific inhibitors, such as nitroxoline and its derivatives, could be used to treat COVID-19. Finally, these results also suggest that nitroxoline has potential to be further explored as repurposed drug in antiviral therapy.


Asunto(s)
COVID-19 , Humanos , Catepsina B/farmacología , SARS-CoV-2 , Antivirales/farmacología , Internalización del Virus
7.
RSC Chem Biol ; 4(3): 229-234, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908700

RESUMEN

The Petasis borono-Mannich reaction was employed for an alternative entry towards three-branched cereblon ligands. Such compounds are capabable of making multiple interactions with the protein surface and possess a suitable linker exit vector. The high-affinity ligands were used to assemble prototypic new molecular glues and proteolysis targeting chimeras (PROTACs) targeting BRD4 for degradation. Our results highlight the importance of multicomponent reactions (MCRs) in drug discovery and add new insights into the rapidly growing field of protein degraders.

8.
J Med Chem ; 66(7): 4703-4733, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36996313

RESUMEN

Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis , Neoplasias , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Neoplasias/metabolismo , Ligandos
9.
RSC Med Chem ; 13(6): 731-736, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35814929

RESUMEN

Various BRAF kinase inhibitors were developed to treat cancers carrying the BRAFV600E mutation. First-generation BRAF inhibitors could lead to paradoxical activation of the MAPK pathway, limiting their clinical usefulness. Here, we show the development of two series of BRAFV600E-targeting PROTACs and demonstrate that the exchange of the inhibitor scaffold from vemurafenib to paradox-breaker ligands resulted in BRAFV600E degraders that did not cause paradoxical ERK activation.

10.
Chem Commun (Camb) ; 58(63): 8858-8861, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35852517

RESUMEN

Targeting deubiquitinating enzymes (DUBs) has emerged as a promising therapeutic approach in several human cancers and other diseases. DUB inhibitors are exciting pharmacological tools but often exhibit limited cellular potency. Here we report PROTACs based on a ubiquitin-specific protease 7 (USP7) inhibitor scaffold to degrade USP7. By investigating several linker and E3 ligand types, including novel cereblon recruiters, we discovered a highly selective USP7 degrader tool compound that induced apoptosis of USP7-dependent cancer cells. This work represents one of the first DUB degraders and unlocks a new drug target class for protein degradation.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Neoplasias , Apoptosis , Humanos , Neoplasias/tratamiento farmacológico , Peptidasa Específica de Ubiquitina 7/metabolismo
11.
Chem Sci ; 13(10): 2946-2953, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35432849

RESUMEN

This work describes the first preparation and application of primary trifluoroborate-iminiums (pTIMs) as a new, easily accessible and valuable class of organoboron derivatives. An array of structurally diverse pTIMs was prepared from potassium acyltrifluoroborates in excellent yields. Highly efficient and enantioselective [(R,R)-TethTsDpen-RuCl] complex-catalyzed hydrogenation of pTIMs provided direct access to chiral primary trifluoroborate-ammoniums (pTAMs). Moreover, facile synthesis of a series of structurally diverse chiral α-aminoboronic acids from chiral pTAMs was accomplished through novel, operationally simple and efficient conversion using hexamethyldisiloxane/aqueous HCl. Using no chromatography at any point, this work allowed easy access to chiral α-aminoboronic acids, as exemplified by the synthesis of optically pure anti-cancer drugs bortezomib and ixazomib.

12.
Chem Soc Rev ; 51(9): 3487-3534, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35393989

RESUMEN

In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.


Asunto(s)
Ubiquitina-Proteína Ligasas , Humanos , Ligandos , Proteolisis , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
Drug Discov Today ; 27(6): 1733-1742, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35301150

RESUMEN

Compounds that exhibit assay interference or undesirable mechanisms of bioactivity are routinely encountered in assays at various stages of drug discovery. We observed that assays for the investigation of thiol-reactive and redox-active compounds have not been collected in a comprehensive review. Here, we review these assays and subject them to experimental optimization to improve their reliability. We demonstrate the usefulness of our assay cascade by assaying a library of bioactive compounds, chemical probes, and a set of approved drugs. These high-throughput assays should complement the array of wet-lab and in silico assays during the initial stages of hit discovery campaigns to pursue only hit compounds with tractable mechanisms of action.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Compuestos de Sulfhidrilo , Descubrimiento de Drogas , Oxidación-Reducción , Reproducibilidad de los Resultados , Compuestos de Sulfhidrilo/química
14.
Arch Pharm (Weinheim) ; 355(5): e2100467, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35128717

RESUMEN

Although the androgen receptor (AR) is a validated target for the treatment of prostate cancer, resistance to antiandrogens necessitates the development of new therapeutic modalities. Exploiting the ubiquitin-proteasome system with proteolysis-targeting chimeras (PROTACs) has become a practical approach to degrade specific proteins and thus to extend the portfolio of small molecules used for the treatment of a broader spectrum of diseases. Herein, we present three subgroups of enzalutamide-based PROTACs in which only the exit vector was modified. By recruiting cereblon, we were able to demonstrate the potent degradation of AR in lung cancer cells. Furthermore, the initial evaluation enabled the design of an optimized PROTAC with a rigid linker that degraded AR with a DC50 value in the nanomolar range. These results provide novel AR-directed PROTACs and a clear rationale for further investigating AR involvement in lung cancer models.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Relación Estructura-Actividad , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo
15.
ChemMedChem ; 17(5): e202100732, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35099120

RESUMEN

Naturally occurring compounds represent a vast pool of pharmacologically active entities. One of such compounds is andrographolide, which is endowed with many beneficial properties, including the activity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). To initiate a drug repurposing or hit optimization campaign, it is imperative to unravel the primary mechanism(s) of the antiviral action of andrographolide. Here, we showed by means of a reporter gene assay that andrographolide exerts its anti-SARS-CoV-2 effects by inhibiting the interaction between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2-related factor 2 (NRF2) causing NRF2 upregulation. Moreover, we demonstrated that subtle structural modifications of andrographolide could lead to derivatives with stronger on-target activities and improved physicochemical properties. Our results indicate that further optimization of this structural class is warranted to develop novel COVID-19 therapies.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Diterpenos/química , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Factor 2 Relacionado con NF-E2/metabolismo , SARS-CoV-2/fisiología , Células Vero , Replicación Viral , Tratamiento Farmacológico de COVID-19
16.
ChemMedChem ; 17(5): e202100694, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994078

RESUMEN

A library of 31 butyrylcholinesterase (BChE) and cathepsin B (CatB) inhibitors was screened in vitro for inhibition of deoxyribonuclease I (DNase I). Compounds 22, 8 and 7 are among the most potent synthetic non-peptide DNase I inhibitors reported to date. Three 8-hydroxyquinoline analogues inhibited both DNase I and BChE with IC50 values below 35 µM and 50 nM, respectively, while two nitroxoline derivatives inhibited DNase I and Cat B endopeptidase activity with IC50 values below 60 and 20 µM. Selected derivatives were screened for various co-target binding affinities at dopamine D2 and D3 , histamine H3 and H4 receptors and inhibition of 5-lipoxygenase. Compound 8 bound to the H3 receptor and is highlighted as the most promising multifunctional ligand with a favorable pharmacokinetic profile and one of the most potent non-peptide DNase I inhibitors. The present study demonstrates that 8-hydroxyquinoline is a structural fragment critical for DNase I inhibition in the presented series of compounds.


Asunto(s)
Butirilcolinesterasa , Catepsina B , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Desoxirribonucleasa I/química , Desoxirribonucleasa I/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Oxiquinolina , Relación Estructura-Actividad
17.
Eur J Med Chem ; 228: 113975, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34865870

RESUMEN

Carbapenemases such as metallo-ß-lactamases (MBLs) are spreading among Gram-negative bacterial pathogens. Infections due to these multidrug-resistant bacteria constitute a major global health challenge. Therapeutic strategies against carbapenemase producing bacteria include ß-lactamase inhibitor combinations. Nitroxoline is a broad-spectrum antibiotic with restricted indication for urinary tract infections. In this study, we report on nitroxoline as an inhibitor of MBLs. We investigate the structure-activity relationships of nitroxoline derivatives considering in vitro MBL inhibitory potency in a fluorescence based assay using purified recombinant MBLs, NDM-1 and VIM-1. We investigated the most potent nitroxoline derivative in combination with imipenem against clinical isolates as well as transformants producing MBL by broth microdilution and time-kill kinetics. Our findings demonstrate that nitroxoline derivatives are potent MBL inhibitors and in combination with imipenem overcome MBL-mediated carbapenem resistance.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Nitroquinolinas/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Bacterias Gramnegativas/enzimología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/aislamiento & purificación
18.
Bioorg Chem ; 118: 105489, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826708

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is the number one cause of deaths due to a single infectious agent worldwide. The treatment of TB is lengthy and often complicated by the increasing drug resistance. New compounds with new mechanisms of action are therefore needed. We present the design, synthesis, and biological evaluation of pyrazine-based inhibitors of a prominent antimycobacterial drug target - mycobacterial methionine aminopeptidase 1 (MtMetAP1). The inhibitory activities of the presented compounds were evaluated against the MtMetAP1a isoform, and all derivatives were tested against a broad spectrum of myco(bacteria) and fungi. The cytotoxicity of the compounds was also investigated using Hep G2 cell lines. Overall, high inhibition of the isolated enzyme was observed for 3-substituted N-(thiazol-2-yl)pyrazine-2-carboxamides, particularly when the substituent was represented by 2-substituted benzamide. The extent of inhibition was strongly dependent on the used metal cofactor. The highest inhibition was seen in the presence of Ni2+. Several compounds also showed mediocre in vitro potency against Mtb (both Mtb H37Ra and H37Rv). Despite the structural similarities of bacterial and fungal MetAP1 to mycobacterial MtMetAP1, title compounds did not exert antibacterial nor antifungal activity. The reasons behind the higher activity of 2-substituted benzamido derivatives, as well as the correlation of enzyme inhibition with the in vitro growth inhibition activity is discussed.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/farmacología , Aminopeptidasas/metabolismo , Antituberculosos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Pirazinas/síntesis química , Pirazinas/química , Relación Estructura-Actividad
19.
Cells ; 10(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34943940

RESUMEN

Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Asunto(s)
Cisteína/química , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Treonina/química , Ubiquitina/química , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Benzoxazoles/química , Benzoxazoles/farmacología , Química Computacional , Cisteína/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/inmunología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Subunidades de Proteína/química , Subunidades de Proteína/inmunología , Relación Estructura-Actividad , Treonina/inmunología , Ubiquitina/inmunología
20.
ACS Med Chem Lett ; 12(11): 1733-1738, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34795861

RESUMEN

Proteolysis targeting chimeras (PROTACs) hijacking the cereblon (CRBN) E3 ubiquitin ligase have emerged as a novel paradigm in drug development. Herein we found that linker attachment points of CRBN ligands highly affect their aqueous stability and neosubstrate degradation features. This work provides a blueprint for the assembly of future heterodimeric CRBN-based degraders with tailored properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...