Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(9): 12007-12017, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38271190

RESUMEN

Entering an era of miniaturization prompted scientists to explore strategies to assemble colloidal crystals for numerous applications, including photonics. However, wet methods are intrinsically less versatile than dry methods, whereas the manual rubbing method of dry powders has been demonstrated only on sticky elastomeric layers, hindering particle transfer in printing applications and applicability in analytical screening. To address this clear impetus of broad applicability, we explore here the assembly on nonelastomeric, rigid substrates by utilizing the manual rubbing method to rapidly (≈20 s) attain monolayers comprising hexagonal closely packed (HCP) crystals of monodisperse dry powder spherical particles with a diameter ranging from 500 nm to 10 µm using a PDMS stamp. Our findings elucidate that the tribocharging-induced electrostatic attraction, particularly on relatively stiff substrates, and contact mechanics force between particles and substrates are critical contributors to attain large-scale HCP structures on conductive and insulating substrates. The best performance was obtained with polystyrene and PMMA powder, while silica was assembled only in HCP structures on fluorocarbon-coated substrates under zero-humidity conditions. Finally, we successfully demonstrated the assembly of tunable crystal patterns on a wafer-scale with great control on fluorocarbon-coated wafers, which is promising in microelectronics, bead-based assays, sensing, and anticounterfeiting applications.

2.
Adv Colloid Interface Sci ; 318: 102956, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393823

RESUMEN

In view of the relevance of organic thin layers in many fields, the fundamentals, growth mechanisms, and dynamics of thin organic layers, in particular thiol-based self-assembled monolayers (SAMs) on Au(111) are systematically elaborated. From both theoretical and practical perspectives, dynamical and structural features of the SAMs are of great intrigue. Scanning tunneling microscopy (STM) is a remarkably powerful technique employed in the characterization of SAMs. Numerous research examples of investigation about the structural and dynamical properties of SAMs using STM, sometimes combined with other techniques, are listed in the review. Advanced options to enhance the time resolution of STM are discussed. Additionally, we elaborate on the extremely diverse dynamics of various SAMs, such as phase transitions and structural changes at the molecular level. In brief, the current review is expected to supply a better understanding and novel insights regarding the dynamical events happening in organic SAMs and how to characterize these processes.

3.
ACS Appl Mater Interfaces ; 15(35): 42004-42014, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37389550

RESUMEN

Contact electrification is an interfacial process in which two surfaces exchange electrical charges when they are in contact with one another. Consequently, the surfaces may gain opposite polarity, inducing an electrostatic attraction. Therefore, this principle can be exploited to generate electricity, which has been precisely done in triboelectric nanogenerators (TENGs) over the last decades. The details of the underlying mechanisms are still ill-understood, especially the influence of relative humidity (RH). Using the colloidal probe technique, we convincingly show that water plays an important role in the charge exchange process when two distinct insulators with different wettability are contacted and separated in <1 s at ambient conditions. The charging process is faster, and more charge is acquired with increasing relative humidity, also beyond RH = 40% (at which TENGs have their maximum power generation), due to the geometrical asymmetry (curved colloid surface vs planar substrate) introduced in the system. In addition, the charging time constant is determined, which is found to decrease with increasing relative humidity. Altogether, the current study adds to our understanding of how humidity levels affect the charging process between two solid surfaces, which is even enhanced up to RH = 90% as long as the curved surface is hydrophilic, paving the way for designing novel and more efficient TENGs, eco-energy harvesting devices which utilize water and solid charge interaction mechanism, self-powered sensors, and tribotronics.

4.
ACS Omega ; 7(46): 41828-41839, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36440129

RESUMEN

Triboelectrification is the spontaneous charging of two bodies when released from contact. Even though its manifestation is commonplace, in for instance triboelectric nanogenerators, scientists find the tribocharging mechanism a mystery. The primary aim of this mini-review is to provide an overview of different tribocharging concepts that have been applied to study and realize the formation of ordered stable structures using different objects on various length scales. Relevance spans from materials to planet formations. Especially, dry assembly methods of particles of different shapes based on tribocharging to obtain crystal structures or monolayers are considered. In addition, the current technology employed to examine tribocharging in (semi)dry environments is discussed as well as the relevant forces playing a role in the assembly process. In brief, this mini-review is expected to provide a better understanding of tribocharging in assembling objects on the nano- and micrometer scales.

5.
Langmuir ; 38(33): 10202-10215, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35951972

RESUMEN

We have studied decanethiolate self-assembled monolayers on the Au(001) surface. Planar and striped phases, as well as disordered regions, have formed after exposing the Au surface to a decanethiol solution. The planar phases that we observe have a hexagonal symmetry and have not been previously reported for thiols on the Au(001) surface and have lower coverage compared to that of the other known thiol planar phases such as the square α phase. The striped phases that we observe are similar to the previously reported ß phase but still feature unit cells that cannot be modeled as the archetype, and the coverage is also somewhat lower. The disordered decanethiolate regions are more dynamic compared to the ordered phases, confirmed with I(t) spectroscopy. This suggests that in these regions the coverage is too low in order to form ordered decanethiolate phases. Our findings contribute to the growing family of possible decanethiol formations on the Au(001) surface, for which still less is known compared to the extensive overview present for the Au(111) surface.

6.
Soft Matter ; 18(19): 3660-3677, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35485633

RESUMEN

The vibration dynamics of relatively large granular grains is extensively treated in the literature, but comparable studies on the self-assembly of smaller agitated beads are lacking. In this work, we investigate how the particle properties and the properties of the underlying substrate surface affect the dynamics and self-organization of horizontally agitated monodisperse microspheres with diameters between 3 and 10 µm. Upon agitation, the agglomerated hydrophilic silica particles locally leave traces of particle monolayers as they move across the flat uncoated and fluorocarbon-coated silicon substrates. However, on the micromachined silicon tray with relatively large surface roughness, the agitated silica agglomerates form segregated bands reminiscent of earlier studies on granular suspensions or Faraday heaps. On the other hand, the less agglomerated hydrophobic polystyrene particles form densely occupied monolayer arrangements regardless of the underlying substrate. We explain the observations by considering the relevant adhesion and friction forces between particles and underlying substrates as well as those among the particles themselves. Interestingly, for both types of microspheres, large areas of the fluorocarbon-coated substrates are covered with densely occupied particle monolayers. By qualitatively examining the morphology of the self-organized particle monolayers using the Voronoi approach, it is understood that these monolayers are highly disordered, i.e., multiple symmetries coexist in the self-organized monolayers. However, more structured symmetries are identified in the monolayers of the agitated polystyrene microspheres on all the substrates, albeit not all precisely positioned on a hexagonal lattice. On the other hand, both the silica and polystyrene monolayers on the bare silicon substrates transition into less disordered structures as time progresses. Using Kelvin probe force microscopy measurements, we show that due to the tribocharging phenomenon, the formation of particle monolayers is promoted on the fluorocarbon surface, i.e., a local electrostatic attraction exists between the particle and the substrate.

7.
ACS Appl Electron Mater ; 4(12): 6020-6028, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36588623

RESUMEN

Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.

8.
Nanoscale ; 13(36): 15464-15470, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34505854

RESUMEN

Achieving tunable optoelectronic properties and clarifying interlayer interactions are key challenges in the development of 2D heterostructures. Herein, we report the feasible modulation of the optoelectronic properties of monolayer MoS2 (1L-MoS2) on three different graphene monolayers with varying ability in extracting electrons. Monolayer oxygen-functionalized graphene (1L-oxo-G, a high amount of oxygen of 60%) with a work function (WF) of 5.67 eV and its lowly oxidized reduction product, namely reduced-oxo-G (1L-r-oxo-G, a low amount of oxygen of 0.1%), with a WF of 5.85 eV serving as hole injection layers significantly enhance the photoluminescence (PL) intensity of MoS2, whereas pristine monolayer graphene (1L-G) with a work function (WF) of 5.02 eV results in PL quenching of MoS2. The enhancement in the PL intensity is due to increase of neutral exciton recombination. Furthermore, 1L-r-oxo-G/MoS2 exhibited a higher increase (5-fold) in PL than 1L-oxo-G/MoS2 (3-fold). Our research can help modulate the carrier concentration and electronic type of 1L-MoS2 and has promising applications in optoelectronic devices.

9.
J Phys Chem C Nanomater Interfaces ; 125(24): 13551-13559, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34239657

RESUMEN

We studied the energy-level alignment at interfaces between various transition-metal dichalcogenide (TMD) monolayers, MoS2, MoSe2, WS2, and WSe2, and metal electrodes with different work functions (WFs). TMDs were deposited on SiO2/silicon wafers by chemical vapor deposition and transferred to Al and Au substrates, with significantly different WFs to identify the metal-semiconductor junction behavior: oxide-terminated Al (natural oxidation) and Au (UV-ozone oxidation) with a WF difference of 0.8 eV. Kelvin probe force microscopy was employed for this study, based on which electronic band diagrams for each case were determined. We observed the Fermi-level pinning for MoS2, while WSe2/metal junctions behaved according to the Schottky-Mott limit. WS2 and MoSe2 exhibited intermediate behavior.

10.
J Mater Chem C Mater ; 9(17): 5699-5705, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33996097

RESUMEN

Two-dimensional oxide materials are a well-studied, interesting class of materials, enabled by the fact that their bulk layered metal oxides, such as titanates and niobates, can be easily exfoliated within minutes into 2D nanosheets. However, some promising oxide materials, such tantalum oxide, are much more difficult to delaminate, taking several weeks, due to the higher charge density resulting in stronger Coulombic interactions between the layers. This intrinsic constraint has limited detailed studies for exploiting the promising properties of tantalum oxide 2D nanosheets towards enhanced catalysis and energy storage. Here, we have studied in detail the exfoliation mechanism of high charge density 2D materials, specifically tantalum oxide (TaO3) nanosheets. Optimization of tetrabutylphosphonium hydroxide (TBPOH) as the exfoliation agent in a 2 : 1 ratio to HTaO3 has resulted in a dramatic reduction of the exfoliation time down to only 36 hours at 80 °C. Furthermore, single monolayers of TaO3 nanosheets with >95% coverage have been achieved by Langmuir-Blodgett deposition, while thicker layers (ranging from several tens of nanometers up to microns) exhibiting long-range ordering of the present nanosheets have been realized through inkjet printing. Interestingly, scanning tunneling microscopy analysis indicated a wide bandgap of ∼5 eV for the single TaO3 nanosheets. This value is significantly higher than the reported values between 3.5 and 4.3 eV for the layered RbTaO3 parent compound, and opens up new opportunities for 2D oxide materials.

11.
Nanomaterials (Basel) ; 11(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808368

RESUMEN

The material BaBiO3 is known for its insulating character. However, for thin films, in the ultra-thin limit, metallicity is expected because the oxygen octahedra breathing mode will be suppressed as reported recently. Here, we confirm the influence of the oxygen breathing mode on the size of the band gap. The electronic properties of a BaBiO3 thickness series are studied using in-situ scanning tunneling microscopy. We observe a wide-gap (EG > 1.2 V) to small-gap (EG ≈ 0.07 eV) semiconductor transition as a function of a decreasing BaBiO3 film thickness. However, even for an ultra-thin BaBiO3 film, no metallic state is present. The dependence of the band gap size is found to be coinciding with the intensity of the Raman response of the breathing phonon mode as a function of thickness.

12.
Langmuir ; 36(42): 12745-12754, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33074008

RESUMEN

In this paper, we obtain maps of the spatial tunnel barrier variations in self-assembled monolayers of organosulfurs on Au(111). Maps down to the sub-nanometer scale are obtained by combining topographic scanning tunneling microscopy images with dI/dz spectroscopy. The square root of the tunnel barrier height is directly proportional to the local work function and the dI/dz signal. We use ratios of the tunnel barriers to study the work function contrast in various decanethiol phases: the lying-down striped ß phase, the dense standing-up φ phase, and the oxidized decanesulfonate λ phase. We compare the induced work function variations too: the work function contrast induced by a lying-down striped phase in comparison to the modulation induced by the standing-up φ phase, as well as the oxidized λ phase. By performing these comparisons, we can account for the similarities and differences in the effects of the mechanisms acting on the surface and extract valuable insights into molecular binding to the substrate. The pillow effect, governing the lowering of the work function due to lying-down molecular tails in the striped low density phases, seems to have quite a similar contribution as the surface dipole effect emerging in the dense standing-up decanethiol phases. The dI/dz spectroscopy map of the nonoxidized ß phase compared to the map of the oxidized λ phase indicates that the strong binding of molecules to the substrate is no longer present in the latter.

13.
Phys Rev E ; 102(3-1): 032138, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33076009

RESUMEN

We have derived exact expressions for the domain wall free energy along the three high-symmetry directions of a triangular lattice with anisotropic nearest-neighbor interactions. The triangular lattice undergoes an order-disorder phase transition at a temperature T_{c} given by e^{-(ε_{1}+ε_{2})/2kT_{c}}+e^{-(ε_{2}+ε_{3})/2kT_{c}}+e^{-(ε_{3}+ε_{1})/2kT_{c}}=1, where ε_{1}, Îµ_{2}, Îµ_{3} are the nearest-neighbor interaction energies, and ε_{1}+ε_{2}>0, Îµ_{2}+ε_{3}>0, Îµ_{3}+ε_{1}>0. Finally, we have derived expressions for the thermally induced meandering of the domain walls at temperatures below the phase transition temperature. We show how these expressions can be used to extract the interaction energies of two-dimensional systems with a triangular lattice.

14.
Langmuir ; 36(24): 6793-6800, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32478522

RESUMEN

Particle (monolayer) assembly is essential to various scientific and industrial applications, such as the fabrication of photonic crystals, optical sensors, and surface coatings. Several methods, including rubbing, have been developed for this purpose. Here, we report on the serendipitous observation that microparticles preferentially partition onto the fluorocarbon-coated parts of patterned silicon and borosilicate glass wafers when rubbed with poly(dimethylsiloxane) slabs. To explore the extent of this effect, we varied the geometry of the pattern, the substrate material, the ambient humidity, and the material and size of the particles. Partitioning coefficients amounted up to a factor of 12 on silicon wafers and even ran in the 100s on borosilicate glass wafers at zero humidity. Using Kelvin probe force microscopy, the observations can be explained by triboelectrification, inducing a strong electrostatic attraction between the particles and the fluorocarbon zones, while the interaction with the noncoated zones is insignificant or even weakly repulsive.

15.
Angew Chem Int Ed Engl ; 59(32): 13651-13656, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32271973

RESUMEN

A novel photoresponsive and fully conjugated N-heterocyclic carbene (NHC) has been synthesized that combines the excellent photophysical properties of arylazopyrazoles (AAPs) with an NHC that acts as a robust surface anchor (AAP-BIMe). The formation of self-assembled monolayers (SAMs) on gold was proven by ToF-SIMS and XPS, and the organic film displayed a very high stability at elevated temperatures. This stability was also reflected in a high desorption energy, which was determined by temperature-programmed SIMS measurements. E-/Z-AAP-BIMe@Au photoisomerization resulted in reversible alterations of the surface energy (i.e. wettability), the surface potential (i.e. work function), and the conductance (i.e. resistance). The effects could be explained by the difference in the dipole moment of the isomers. Furthermore, sequential application of a dummy ligand by microcontact printing and subsequent backfilling with AAP-BIMe allowed its patterning on gold. To the best of our knowledge, this is the first example of a photoswitchable NHC on a gold surface. These properties of AAP-BIMe@Au illustrate its suitability as a molecular switch for electronic devices.

16.
Artículo en Inglés | MEDLINE | ID: mdl-31469090

RESUMEN

Expressions (7) and 8) of ref. [1] are incorrect. The correct expressions (7) and (8) should read,&#13; &#13; &lt;n^2&gt;=(1+e^((-ε)/(k_B T)) )^2/(2(1-e^((-ε)/(k_B T)) )^2 ) a^2&#13; (7)&#13; and&#13; &#13; &lt;n^2&gt;=(1+e^(-□(T_c/T) ln⁡(3)) )^2/(2(1-e^(-□(T_c/T) ln⁡(3)) )^2 ) a^2&#13; &#13; (8)&#13; &#13; At the critical temperature, T_c, the mean square kink length of the triangular lattice should be 2a^2 and not 1a^2. The slope in Figure 5, i.e. □((&lt;n^2&gt;)/a)=2a, where a=0.5 nm is the lattice constant of the (√3 x√3)R〖30〗^o lattice of the decanethiol self-assembled monolayer on the Au(111) substrate, remains unaltered (slope is ~ 1 nm) and therefore our conclusions remain valid.&#13.

17.
J Phys Chem C Nanomater Interfaces ; 123(9): 5411-5420, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30873255

RESUMEN

Understanding the electron transport through transition-metal dichalcogenide (TMDC)-based semiconductor/metal junctions is vital for the realization of future TMDC-based (opto-)electronic devices. Despite the bonding in TMDCs being largely constrained within the layers, strong Fermi-level pinning (FLP) was observed in TMDC-based devices, reducing the tunability of the Schottky barrier height. We present evidence that metal-induced gap states (MIGS) are the origin for the large FLP similar to conventional semiconductors. A variety of TMDCs (MoSe2, WSe2, WS2, and MoTe2) were investigated using high-spatial-resolution surface characterization techniques, permitting us to distinguish between defected and pristine regions. The Schottky barrier heights on the pristine regions can be explained by MIGS, inducing partial FLP. The FLP strength is further enhanced by disorder-induced gap states induced by transition-metal vacancies or substitutionals at the defected regions. Our findings emphasize the importance of defects on the electron transport properties in TMDC-based devices and confirm the origin of FLP in TMDC-based metal/semiconductor junctions.

19.
J Phys Chem C Nanomater Interfaces ; 122(15): 8430-8436, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29707099

RESUMEN

Self-assembled monolayers (SAMs) of alkanethiols on gold are a commonly used platform for nanotechnology owing to their ease of preparation and high surface coverage. Unfortunately, the gold-sulfur bond is oxidized at ambient conditions which alters the stability and structure of the monolayer. We show using scanning tunneling microscopy and X-ray photoelectron spectroscopy that decanethiolate molecules oxidize into decanesulfonates that organize into a hitherto unknown striped phase. Air-exposed SAMs oxidize, as can be determined by a shift of the S 2p peak and the appearance of O 1s photoelectrons as part of the decanethiol monolayer transforms into a lamellae-like decanesulfonate structure when exposed to air. The herringbone structure of the Au(111) surface is preserved, indicating that the interaction between the molecules and the surface is rather weak as these findings are substantiated by density functional theory calculations.

20.
ACS Appl Mater Interfaces ; 10(15): 13218-13225, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29578328

RESUMEN

Here, we report on the surface conductivity of WSe2 and Mo xW1- xSe2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe2, in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of Mo xW1- xSe2, its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...