Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299312

RESUMEN

In recent years, polymeric materials have been gaining prominence in studies of controlled release systems to obtain improvements in drug administration. These systems present several advantages compared with conventional release systems, such as constant maintenance in the blood concentration of a given drug, greater bioavailability, reduction of adverse effects, and fewer dosages required, thus providing a higher patient compliance to treatment. Given the above, the present work aimed to synthesize polymeric matrices derived from polyethylene glycol (PEG) capable of promoting the controlled release of the drug ketoconazole in order to minimize its adverse effects. PEG 4000 is a widely used polymer due to its excellent properties such as hydrophilicity, biocompatibility, and non-toxic effects. In this work, PEG 4000 and derivatives were incorporated with ketoconazole. The morphology of polymeric films was observed by AFM and showed changes on the film organization after drug incorporation. In SEM, it was possible to notice spheres that formed in some incorporated polymers. The zeta potential of PEG 4000 and its derivatives was determined and suggested that the microparticle surfaces showed a low electrostatic charge. Regarding the controlled release, all the incorporated polymers obtained a controlled release profile at pH 7.3. The release kinetics of ketoconazole in the samples of PEG 4000 and its derivatives followed first order for PEG 4000 HYDR INCORP and Higuchi for the other samples. Cytotoxicity was determined and PEG 4000 and its derivatives were not cytotoxic.

2.
Sci Rep ; 10(1): 22312, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339861

RESUMEN

Plants may contain beneficial or potentially dangerous substances to humans. This study aimed to prepare and evaluate a new drug delivery system based on a glass-ionomer-Brazilian pepper extract composite, to check for its activity against pathogenic microorganisms of the oral cavity, along with its in vitro biocompatibility. The ethanolic Brazilian pepper extract (BPE), the glass-ionomer cement (GIC) and the composite GIC-BPE were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and thermal analysis. The BPE compounds were identified by UPLC-QTOF-MS/MS. The release profile of flavonoids and the mechanical properties of the GIC-BPE composite were assessed. The flavonoids were released through a linear mechanism governing the diffusion for the first 48 h, as evidenced by the Mt/M∞ relatively to [Formula: see text], at a diffusion coefficient of 1.406 × 10-6 cm2 s-1. The ATR-FTIR analysis indicated that a chemical bond between the GIC and BPE components may have occurred, but the compressive strength of GIC-BPE does not differ significantly from that of this glass-ionomer. The GIC-BPE sample revealed an ample bacterial activity at non-cytotoxic concentrations for the human fibroblast MRC-5 cells. These results suggest that the prepared composite may represent an alternative agent for endodontic treatment.


Asunto(s)
Anacardiaceae/química , Cementos de Ionómero Vítreo/síntesis química , Boca/efectos de los fármacos , Extractos Vegetales/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Brasil , Fuerza Compresiva , Frutas/química , Cementos de Ionómero Vítreo/química , Cementos de Ionómero Vítreo/farmacología , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Boca/química , Boca/microbiología , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...