Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol ; 96(1): 28-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733107

RESUMEN

The peroxyoxalate reaction is one of the most efficient chemiluminescence transformations known and the only system occurring by an intermolecular chemically initiated electron exchange luminescence (CIEEL) mechanism with confirmed high quantum yields. The peroxyoxalate chemiluminescence (PO-CL) is mainly studied in anhydrous organic medium; however, for bioanalytical application, it should be performed in aqueous media. In the present work, we study the peroxyoxalate system in a binary 1,2-dimethoxyethane/water mixture with bis(2,4,6-trichlorophenyl) oxalate (TCPO), bis(4-methylphenyl) oxalate (BMePO) and bis[2-(methoxycarbonyl)phenyl] oxalate (DMO), catalyzed by sodium salicylate, in the presence of rhodamine 6G as activator. Reproducible kinetic results are obtained for all systems; emission decay rate constants depend on the salicylate as well as hydrogen peroxide concentration, and the occurrence of a specific base catalysis is verified. Although singlet quantum yields determined are lower than in anhydrous media in comparable conditions, they are still considerably high and adequate for analytical applications. The highest singlet quantum yields are obtained for the "ecologically friendly" derivative DMO indicating that this derivative might be the most adequate substrate for the use of the peroxyoxalate system in bioanalytical applications.

2.
Photochem Photobiol ; 93(6): 1423-1429, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28543444

RESUMEN

Mechanistic studies on the peroxyoxalate chemiluminescence are often conducted with imidazole as base and nucleophilic catalyst. However, it is also known that this compound, at high concentrations, leads to a drastic reduction in the chemiluminescence quantum yields, apparently due to the destruction of the high-energy intermediate. Consequently, the search for new catalysts for this transformation is of importance for mechanistic studies as well as analytical application. Therefore, we report here a study on the mechanism of the peroxyoxalate reaction with sodium salicylate as base catalyst, which has already been utilized in this reaction; however, no detailed mechanistic investigation is known. In this work, a kinetic study on the sodium salicylate-catalyzed reaction of bis(2,4,6-trichlorophenyl) oxalate with hydrogen peroxide using 9,10-diphenylanthracene as activator is reported, where observed rate constants, singlet quantum yields and activation parameters are determined in different reaction conditions, leading to the formulation of a general mechanistic reaction scheme.

3.
Photochem Photobiol ; 89(6): 1299-317, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23711099

RESUMEN

Although the mechanisms of many chemiluminescence (CL) reactions have been intensively studied, no general model has been suggested to rationalize the efficiency of these transformations. To contribute to this task, we report here quantum yields for some well-characterized CL reactions, concentrating on recent reports of efficient transformations. Initially, a short review on the most important general CL mechanisms is given, including unimolecular peroxide decomposition, electrogenerated CL, as well as the intermolecular and intramolecular catalyzed decomposition of peroxides. Thereafter, quantum yield values for several CL transformations are compiled, including the unimolecular decomposition of 1,2-dioxetanes and 1,2-dioxetanones, the catalyzed decomposition of appropriate peroxides and the induced decomposition of properly substituted 1,2-dioxetane derivatives. Finally, some representative examples of quantum yields for complex CL transformations, like luminol oxidation and the peroxyoxalate reaction, in different experimental conditions are given. This quantum yield compilation indicates that CL transformations involving electron transfer steps can occur with high efficiency in general only if the electron transfer is of intramolecular nature, with the intermolecular processes being commonly inefficient. A notable exception to this general rule is the peroxyoxalate reaction which, also constituting an example of an intermolecular electron transfer system, possesses very high quantum yields.


Asunto(s)
Transporte de Electrón , Luminiscencia , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...