Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Crit Care Sci ; 36: e20240284en, 2024.
Article En, Pt | MEDLINE | ID: mdl-38716961

OBJECTIVE: To examine the physical function and respiratory muscle strength of patients - who recovered from critical COVID-19 - after intensive care unit discharge to the ward on Days one (D1) and seven (D7), and to investigate variables associated with functional impairment. METHODS: This was a prospective cohort study of adult patients with COVID-19 who needed invasive mechanical ventilation, non-invasive ventilation or high-flow nasal cannula and were discharged from the intensive care unit to the ward. Participants were submitted to Medical Research Council sum-score, handgrip strength, maximal inspiratory pressure, maximal expiratory pressure, and short physical performance battery tests. Participants were grouped into two groups according to their need for invasive ventilation: the Invasive Mechanical Ventilation Group (IMV Group) and the Non-Invasive Mechanical Ventilation Group (Non-IMV Group). RESULTS: Patients in the IMV Group (n = 31) were younger and had higher Sequential Organ Failure Assessment scores than those in the Non-IMV Group (n = 33). The short physical performance battery scores (range 0 - 12) on D1 and D7 were 6.1 ± 4.3 and 7.3 ± 3.8, respectively for the Non-Invasive Mechanical Ventilation Group, and 1.3 ± 2.5 and 2.6 ± 3.7, respectively for the IMV Group. The prevalence of intensive care unit-acquired weakness on D7 was 13% for the Non-IMV Group and 72% for the IMV Group. The maximal inspiratory pressure, maximal expiratory pressure, and handgrip strength increased on D7 in both groups, but the maximal expiratory pressure and handgrip strength were still weak. Only maximal inspiratory pressure was recovered (i.e., > 80% of the predicted value) in the Non-IMV Group. Female sex, and the need and duration of invasive mechanical were independently and negatively associated with the short physical performance battery score and handgrip strength. CONCLUSION: Patients who recovered from critical COVID-19 and who received invasive mechanical ventilation presented greater disability than those who were not invasively ventilated. However, they both showed marginal functional improvement during early recovery, regardless of the need for invasive mechanical ventilation. This might highlight the severity of disability caused by SARS-CoV-2.


COVID-19 , Intensive Care Units , Respiration, Artificial , Survivors , Humans , COVID-19/epidemiology , COVID-19/therapy , Male , Female , Middle Aged , Prospective Studies , Aged , Survivors/statistics & numerical data , SARS-CoV-2 , Muscle Strength , Hand Strength , Respiratory Muscles/physiopathology , Physical Functional Performance
2.
Life Sci ; 301: 120599, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35513085

Lung inflammation is modulated by cholinergic signaling and exercise training protects mice against pulmonary emphysema development; however, whether exercise training engages cholinergic signaling is unknown. AIMS: As cholinergic signaling is directly linked to the vesicular acetylcholine transporter (VAChT) levels, we evaluated whether the effects of aerobic exercise training depend on the VAChT levels in mice with pulmonary emphysema. MAIN METHODS: Wild-type (WT) and mutant (KDHOM) mice (65-70% of reduction in VAChT levels) were exposed to cigarette smoke (30 min, 2×/day, 5×/week, 12 weeks) and submitted or not to aerobic exercise training on a treadmill (60 min/day, 5×/week, 12 weeks). Lung function and inflammation were evaluated. KEY FINDINGS: Cigarette smoke reduced body mass in mice (p < 0.001) and increased alveolar diameter (p < 0.001), inflammation (p < 0.001) and collagen deposition (p < 0.01) in lung tissue. Both trained groups improved their performance in the final physical test compared to the initial test (p < 0.001). In WT mice, exercise training protected against emphysema development (p < 0.05), reduced mononuclear cells infiltrate (p < 0.001) and increased MAC-2 positive cells in lung parenchyma (p < 0.05); however, these effects were not observed in KDHOM mice. The exercise training reduced iNOS-positive cells (p < 0.001) and collagen fibers deposition (p < 0.05) in lung parenchyma of WT and KDHOM mice, although KDHOM mice showed higher levels of iNOS-positive cells. SIGNIFICANCE: Our data suggest that the protective effects of aerobic exercise training on pulmonary emphysema are, at least in part, dependent on the integrity of the lung cholinergic signaling.


Cigarette Smoking , Emphysema , Pulmonary Emphysema , Animals , Cholinergic Agents , Inflammation , Lung , Mice , Mice, Inbred C57BL , Pulmonary Emphysema/etiology , Pulmonary Emphysema/prevention & control , Vesicular Acetylcholine Transport Proteins
...