Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Kidney Int ; 105(4): 799-811, 2024 Apr.
Article En | MEDLINE | ID: mdl-38096951

Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.


Amyloidosis , Apolipoproteins A , Nephritis, Interstitial , Renal Insufficiency, Chronic , Humans , Middle Aged , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/genetics , Nephritis, Interstitial/complications , Mutation , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/complications
2.
Life Sci Alliance ; 5(4)2022 04.
Article En | MEDLINE | ID: mdl-35064074

The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.


Phenylbutyrates/pharmacology , Renin/metabolism , SEC Translocation Channels/genetics , Calcium/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Kidney Diseases/physiopathology , Molecular Chaperones/metabolism , Mutation, Missense , Phenylbutyrates/metabolism , Polycystic Kidney Diseases , Protein Transport/genetics , Renin/genetics , SEC Translocation Channels/chemistry , SEC Translocation Channels/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
3.
Kidney Int ; 98(6): 1589-1604, 2020 12.
Article En | MEDLINE | ID: mdl-32750457

There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum-Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct.


Anemia , Polycystic Kidney Diseases , Adult , Child , Cohort Studies , Female , Humans , Male , Mutation , Polycystic Kidney Diseases/genetics , Renin/genetics , Young Adult
4.
Eur J Hum Genet ; 28(6): 783-789, 2020 06.
Article En | MEDLINE | ID: mdl-31919451

Adult-onset neuronal ceroid lipofuscinoses (ANCL, Kufs disease) are rare hereditary neuropsychiatric disorders characterized by intralysosomal accumulation of ceroid in tissues. The ceroid accumulation primarily affects the brain, leading to neuronal loss and progressive neurodegeneration. Although several causative genes have been identified (DNAJC5, CLN6, CTSF, GRN, CLN1, CLN5, ATP13A2), the genetic underpinnings of ANCL in some families remain unknown. Here we report one family with autosomal dominant (AD) Kufs disease caused by a 30 bp in-frame duplication in DNAJC5, encoding the cysteine-string protein alpha (CSPα). This variant leads to a duplication of the central core motif of the cysteine-string domain of CSPα and affects palmitoylation-dependent CSPα sorting in cultured neuronal cells similarly to two previously described CSPα variants, p.(Leu115Arg) and p.(Leu116del). Interestingly, the duplication was not detected initially by standard Sanger sequencing due to a preferential PCR amplification of the shorter wild-type allele and allelic dropout of the mutated DNAJC5 allele. It was also missed by subsequent whole-exome sequencing (WES). Its identification was facilitated by reanalysis of original WES data and modification of the PCR and Sanger sequencing protocols. Independently occurring variants in the genomic sequence of DNAJC5 encoding the cysteine-string domain of CSPα suggest that this region may be more prone to DNA replication errors and that insertions or duplications within this domain should be considered in unsolved ANCL cases.


Gene Duplication , HSP40 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Adult , Animals , Cell Line , False Negative Reactions , Female , Genetic Testing/standards , HSP40 Heat-Shock Proteins/metabolism , Humans , Male , Membrane Proteins/metabolism , Mice , Middle Aged , Neuronal Ceroid-Lipofuscinoses/pathology , Neurons/metabolism , Protein Processing, Post-Translational , Protein Transport , Whole Genome Sequencing/standards
5.
J Am Soc Nephrol ; 29(9): 2418-2431, 2018 09.
Article En | MEDLINE | ID: mdl-29967284

BACKGROUND: Autosomal dominant tubulointerstitial kidney disease caused by mucin-1 gene (MUC1) mutations (ADTKD-MUC1) is characterized by progressive kidney failure. Genetic evaluation for ADTKD-MUC1 specifically tests for a cytosine duplication that creates a unique frameshift protein (MUC1fs). Our goal was to develop immunohistochemical methods to detect the MUC1fs created by the cytosine duplication and, possibly, by other similar frameshift mutations and to identify novel MUC1 mutations in individuals with positive immunohistochemical staining for the MUC1fs protein. METHODS: We performed MUC1fs immunostaining on urinary cell smears and various tissues from ADTKD-MUC1-positive and -negative controls as well as in individuals from 37 ADTKD families that were negative for mutations in known ADTKD genes. We used novel analytic methods to identify MUC1 frameshift mutations. RESULTS: After technique refinement, the sensitivity and specificity for MUC1fs immunostaining of urinary cell smears were 94.2% and 88.6%, respectively. Further genetic testing on 17 families with positive MUC1fs immunostaining revealed six families with five novel MUC1 frameshift mutations that all predict production of the identical MUC1fs protein. CONCLUSIONS: We developed a noninvasive immunohistochemical method to detect MUC1fs that, after further validation, may be useful in the future for diagnostic testing. Production of the MUC1fs protein may be central to the pathogenesis of ADTKD-MUC1.


Genetic Predisposition to Disease/epidemiology , Mucin-1/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Biopsy, Needle , Case-Control Studies , Female , Humans , Immunohistochemistry , Incidence , Male , Mutation/genetics , Pedigree , Polycystic Kidney, Autosomal Dominant/mortality , Prognosis , Registries , Retrospective Studies , Risk Assessment
6.
Hum Mol Genet ; 25(18): 4062-4079, 2016 09 15.
Article En | MEDLINE | ID: mdl-27466185

The Acadian variant of Fanconi Syndrome refers to a specific condition characterized by generalized proximal tubular dysfunction from birth, slowly progressive chronic kidney disease and pulmonary interstitial fibrosis. This condition occurs only in Acadians, a founder population in Nova Scotia, Canada. The genetic and molecular basis of this disease is unknown. We carried out whole exome and genome sequencing and found that nine affected individuals were homozygous for the ultra-rare non-coding variant chr8:96046914 T > C; rs575462405, whereas 13 healthy siblings were either heterozygotes or lacked the mutant allele. This variant is located in intron 2 of NDUFAF6 (NM_152416.3; c.298-768 T > C), 37 base pairs upstream from an alternative splicing variant in NDUFAF6 chr8:96046951 A > G; rs74395342 (c.298-731 A > G). NDUFAF6 encodes NADH:ubiquinone oxidoreductase complex assembly factor 6, also known as C8ORF38. We found that rs575462405-either alone or in combination with rs74395342-affects splicing and synthesis of NDUFAF6 isoforms. Affected kidney and lung showed specific loss of the mitochondria-located NDUFAF6 isoform and ultrastructural characteristics of mitochondrial dysfunction. Accordingly, affected tissues had defects in mitochondrial respiration and complex I biogenesis that were corrected with NDUFAF6 cDNA transfection. Our results demonstrate that the Acadian variant of Fanconi Syndrome results from mitochondrial respiratory chain complex I deficiency. This information may be used in the diagnosis and prevention of this disease in individuals and families of Acadian descent and broadens the spectrum of the clinical presentation of mitochondrial diseases, respiratory chain defects and defects of complex I specifically.


Electron Transport Complex I/genetics , Fanconi Syndrome/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Adult , Alleles , Canada , Chromosome Mapping , Exome/genetics , Fanconi Syndrome/pathology , Female , Genetic Predisposition to Disease , Heterozygote , Homozygote , Humans , Kidney/metabolism , Kidney/pathology , Lung/metabolism , Lung/pathology , Male , Middle Aged , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mutation
7.
Am J Hum Genet ; 99(1): 174-87, 2016 Jul 07.
Article En | MEDLINE | ID: mdl-27392076

Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.


Anemia/genetics , Heterozygote , Kidney Diseases/genetics , Mutation , SEC Translocation Channels/genetics , Adult , Aged , Alleles , Amino Acid Sequence , Animals , Biopsy , Child , Chronic Disease , Disease Progression , Endoplasmic Reticulum/metabolism , Exome/genetics , Female , Fetal Growth Retardation/genetics , Genes, Dominant , Golgi Apparatus/metabolism , Humans , Infant, Newborn , Kidney Diseases/pathology , Male , Middle Aged , Models, Molecular , Mutation, Missense/genetics , Neutropenia/genetics , Pedigree , Phenotype , RNA, Messenger/analysis , RNA, Messenger/genetics , SEC Translocation Channels/chemistry , Syndrome , Young Adult , Zebrafish/embryology , Zebrafish/genetics
8.
Cell Metab ; 20(3): 448-57, 2014 Sep 02.
Article En | MEDLINE | ID: mdl-25066056

Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.


Metabolic Diseases/genetics , Receptors, Cell Surface/genetics , Transferases/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Dolichols/metabolism , Evolution, Molecular , Female , Gene Knockout Techniques , Glycosylation , Humans , Male , Metabolic Diseases/metabolism , Mice , Molecular Sequence Data , Point Mutation , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transferases/chemistry , Transferases/metabolism
9.
Circ Cardiovasc Genet ; 6(6): 543-51, 2013 Dec.
Article En | MEDLINE | ID: mdl-24114807

BACKGROUND: Hypertrophic cardiomyopathy with severe left ventricular diastolic dysfunction has been associated with marked exercise intolerance and poor prognosis. However, molecular pathogenesis of this phenotype remains unexplained in a large proportion of cases. METHODS AND RESULTS: We performed whole exome sequencing as an initial genetic test in a large Czech family with 3 males affected by nonobstructive hypertrophic cardiomyopathy with severe left ventricular diastolic dysfunction in end-stage disease. A novel frameshift mutation of four-and-a-half LIM domain 1 gene (FHL1) (c.599_600insT; p.F200fs32X) was detected in these individuals. The mutation does not affect transcription, splicing, and stability of FHL1 mRNA and results in production of truncated FHL1 protein, which is contrary to heart tissue homogenate not detectable in frozen tissue sections of myocardial biopsy of affected males. The identified mutation cosegregated also with abnormal ECG and with 1 case of apical hypertrophic cardiomyopathy in heterozygous females. Although skeletal muscle involvement is a common finding in FHL1-related diseases, we could exclude myopathy in all mutation carriers. CONCLUSIONS: We identified a novel FHL1 mutation causing isolated hypertrophic cardiomyopathy with X-chromosomal inheritance.


Cardiomyopathy, Hypertrophic/genetics , Genetic Predisposition to Disease/genetics , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Muscle Proteins/genetics , Mutation , Adolescent , Adult , Aged, 80 and over , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/physiopathology , Electrocardiography , Family Health , Female , Genes, X-Linked/genetics , Humans , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Male , Microscopy, Electron , Middle Aged , Muscle Proteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Pedigree , Reverse Transcriptase Polymerase Chain Reaction
10.
Am J Hum Genet ; 92(5): 792-9, 2013 May 02.
Article En | MEDLINE | ID: mdl-23602711

The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozygous nonsense mutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicing mutations (c.1435-12A>G [p.Gly479Phefs*119]) in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay, resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neopeptide composed of 118 unique amino acids in its C terminus. GAPO syndrome's major phenotypic features, which include dental abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an underlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this disease's characteristic generalized defect in extracellular-matrix homeostasis.


Alopecia/genetics , Anodontia/genetics , Chromosomes, Human, Pair 2/genetics , Extracellular Matrix/genetics , Genetic Predisposition to Disease/genetics , Growth Disorders/genetics , Homeostasis/genetics , Neoplasm Proteins/genetics , Optic Atrophies, Hereditary/genetics , Receptors, Cell Surface/genetics , Alopecia/pathology , Alternative Splicing/genetics , Anodontia/pathology , Base Sequence , Codon, Nonsense/genetics , DNA Primers/genetics , Extracellular Matrix/metabolism , Fibroblasts , Fluorescent Antibody Technique , Gene Frequency , Growth Disorders/pathology , Humans , Male , Microfilament Proteins , Molecular Sequence Data , Optic Atrophies, Hereditary/pathology , Pedigree , RNA Splice Sites/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
11.
Nat Genet ; 45(3): 299-303, 2013 Mar.
Article En | MEDLINE | ID: mdl-23396133

Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.


Minisatellite Repeats/genetics , Mucin-1/genetics , Mutation , Polycystic Kidney, Autosomal Dominant , Cytosine/metabolism , Female , Genetic Linkage , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Male , Mucin-1/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology
12.
Hum Mol Genet ; 21(7): 1534-43, 2012 Apr 01.
Article En | MEDLINE | ID: mdl-22180458

The purinosome is a multienzyme complex composed by the enzymes active in de novo purine synthesis (DNPS) that cells transiently assemble in their cytosol upon depletion or increased demand of purines. The process of purinosome formation has thus far been demonstrated and studied only in human epithelial cervical cancer cells (HeLa) and human liver carcinoma cells (C3A) transiently expressing recombinant fluorescently labeled DNPS proteins. Using parallel immunolabeling of various DNPS enzymes and confocal fluorescent microscopy, we proved purinosome assembly in HeLa, human hepatocellular liver carcinoma cell line (HepG2), sarcoma osteogenic cells (Saos-2), human embryonic kidney cells (HEK293), human skin fibroblasts (SF) and primary human keratinocytes (KC) cultured in purine-depleted media. Using the identical approach, we proved in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency that various mutations of ATIC and ADSL destabilize to various degrees of purinosome assembly and found that the ability to form purinosomes correlates with clinical phenotypes of individual ADSL patients. Our results thus shown that the assembly of functional purinosomes is fully dependent on the presence of structurally unaffected ATIC and ADSL complexes and presumably also on the presence of all the other DNPS proteins. The results also corroborate the hypothesis that the phenotypic severity of ADSL deficiency is mainly determined by structural stability and residual catalytic capacity of the corresponding mutant ADSL protein complexes, as this is prerequisite for the formation and stability of the purinosome and at least partial channeling of succinylaminoimidazolecarboxamide riboside-ADSL enzyme substrates-through the DNPS pathway.


Adenylosuccinate Lyase/genetics , Hydroxymethyl and Formyl Transferases/genetics , Multienzyme Complexes/genetics , Nucleotide Deaminases/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/enzymology , Purine-Pyrimidine Metabolism, Inborn Errors/genetics , Adenylosuccinate Lyase/deficiency , Autistic Disorder , Cell Line, Tumor , Cells, Cultured , Fibroblasts/enzymology , HeLa Cells , Humans , Hydroxymethyl and Formyl Transferases/analysis , Keratinocytes/enzymology , Multienzyme Complexes/analysis , Mutation , Nucleotide Deaminases/analysis , Purines/metabolism , Skin/cytology
13.
Am J Hum Genet ; 85(2): 204-13, 2009 Aug.
Article En | MEDLINE | ID: mdl-19664745

Through linkage analysis and candidate gene sequencing, we identified three unrelated families with the autosomal-dominant inheritance of early onset anemia, hypouricosuric hyperuricemia, progressive kidney failure, and mutations resulting either in the deletion (p.Leu16del) or the amino acid exchange (p.Leu16Arg) of a single leucine residue in the signal sequence of renin. Both mutations decrease signal sequence hydrophobicity and are predicted by bioinformatic analyses to damage targeting and cotranslational translocation of preprorenin into the endoplasmic reticulum (ER). Transfection and in vitro studies confirmed that both mutations affect ER translocation and processing of nascent preprorenin, resulting either in reduced (p.Leu16del) or abolished (p.Leu16Arg) prorenin and renin biosynthesis and secretion. Expression of renin and other components of the renin-angiotensin system was decreased accordingly in kidney biopsy specimens from affected individuals. Cells stably expressing the p.Leu16del protein showed activated ER stress, unfolded protein response, and reduced growth rate. It is likely that expression of the mutant proteins has a dominant toxic effect gradually reducing the viability of renin-expressing cells. This alters the intrarenal renin-angiotensin system and the juxtaglomerular apparatus functionality and leads to nephron dropout and progressive kidney failure. Our findings provide insight into the functionality of renin-angiotensin system and stress the importance of renin analysis in families and individuals with early onset hyperuricemia, anemia, and progressive kidney failure.


Anemia/genetics , Genes, Dominant , Hyperuricemia/genetics , Kidney Failure, Chronic/genetics , Renin/genetics , Adolescent , Adult , Age of Onset , Anemia/metabolism , Cell Line , Child , Child, Preschool , Computer Simulation , Female , Genetic Linkage , Humans , Hyperuricemia/metabolism , Kidney/cytology , Kidney/ultrastructure , Kidney Failure, Chronic/metabolism , Male , Middle Aged , Mutation , Pedigree , Renin/metabolism , Sequence Analysis, DNA , Young Adult
...