Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
bioRxiv ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38746349

Histone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules in vitro , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs in vitro . Here, we generated IPMK knockout (IKO) human U251 glioblastoma cells, which decreased cellular inositol phosphate levels and increased histone H4-acetylation by mass spectrometry. ChIP-seq showed IKO increased H4-acetylation at IKO-upregulated genes, but H4-acetylation was unchanged at IKO-downregulated genes, suggesting gene-specific responses to IPMK knockout. HDAC deacetylase enzyme activity was decreased in HDAC3 immunoprecipitates from IKO vs . wild-type cells, while deacetylase activity of other Class 1 HDACs had no detectable changes in activity. Wild-type IPMK expression in IKO cells fully rescued HDAC3 deacetylase activity, while kinase-dead IPMK expression had no effect. Further, the deficiency in HDAC3 activity in immunoprecipitates from IKO cells could be fully rescued by addition of synthesized IP4 (Ins(1,4,5,6)P4) to the enzyme assay, while control inositol had no effect. These data suggest that cellular IPMK-dependent inositol phosphates are required for full HDAC3 enzyme activity and proper histone H4-acetylation. Implications for targeting IPMK in HDAC3-dependent diseases are discussed.

2.
bioRxiv ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38645162

Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.

3.
bioRxiv ; 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38464197

We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.

4.
PLoS Pathog ; 19(6): e1011423, 2023 06.
Article En | MEDLINE | ID: mdl-37267431

The mature HIV-1 capsid is stabilized by host and viral determinants. The capsid protein CA binds to the cellular metabolites inositol hexakisphosphate (IP6) and its precursor inositol (1, 3, 4, 5, 6) pentakisphosphate (IP5) to stabilize the mature capsid. In target cells, capsid destabilization by the antiviral compounds lenacapavir and PF74 reveals a HIV-1 infectivity defect due to IP5/IP6 (IP5/6) depletion. To test whether intrinsic HIV-1 capsid stability and/or host factor binding determines HIV-1 insensitivity to IP5/6 depletion, a panel of CA mutants was assayed for infection of IP5/6-depleted T cells and wildtype cells. Four CA mutants with unstable capsids exhibited dependence on host IP5/6 for infection and reverse transcription (RTN). Adaptation of one such mutant, Q219A, by spread in culture resulted in Vpu truncation and a capsid three-fold interface mutation, T200I. T200I increased intrinsic capsid stability as determined by in vitro uncoating of purified cores and partially reversed the IP5/6-dependence in target cells for each of the four CA mutants. T200I further rescued the changes to lenacapavir sensitivity associated with the parental mutation. The premature dissolution of the capsid caused by the IP5/6-dependent mutations imparted a unique defect in integration targeting that was rescued by T200I. Collectively, these results demonstrate that T200I restored other capsid functions after RTN for the panel of mutants. Thus, the hyperstable T200I mutation stabilized the instability defects imparted by the parental IP5/6-dependent CA mutation. The contribution of Vpu truncation to mutant adaptation was linked to BST-2 antagonization, suggesting that cell-to-cell transfer promoted replication of the mutants. We conclude that interactions at the three-fold interface are adaptable, key mediators of capsid stability in target cells and are able to antagonize even severe capsid instability to promote infection.


Anti-HIV Agents , HIV Seropositivity , HIV-1 , Humans , Capsid/metabolism , HIV-1/genetics , HIV-1/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Inositol Phosphates/metabolism , Anti-HIV Agents/pharmacology
5.
J Virol ; 95(24): e0144521, 2021 11 23.
Article En | MEDLINE | ID: mdl-34613803

The HIV-1 capsid, composed of the CA protein, is the target of the novel antiretroviral drug lenacapavir (LCV). CA inhibitors block host factor binding and alter capsid stability to prevent nuclear entry and reverse transcription (RTN), respectively. Capsid stability is mediated in vitro by binding to the host cell metabolite inositol hexakisphosphate (IP6). IP6 depletion in target cells has little effect on HIV-1 infection. We hypothesized that capsid-altering concentrations of CA inhibitors might reveal an effect of IP6 depletion on HIV-1 infection in target cells. To test this, we studied the effects of IP6 depletion on inhibition of infection by the CA inhibitors PF74 and LCV. At low doses of either compound that affect HIV-1 nuclear entry, no effect of IP6 depletion on antiviral activity was observed. Increased antiviral activity was observed in IP6-depleted cells at inhibitor concentrations that affect capsid stability, correlating with increased RTN inhibition. Assays of uncoating and endogenous RTN of purified cores in vitro provided additional support. Our results show that inositol phosphates stabilize the HIV-1 capsid in target cells, thereby dampening the antiviral effects of capsid-targeting antiviral compounds. We propose that targeting of the IP6-binding site in conjunction with CA inhibitors will lead to robust antiretroviral therapy (ART). IMPORTANCE HIV-1 infection and subsequent depletion of CD4+ T cells result in AIDS. Antiretroviral therapy treatment of infected individuals prevents progression to AIDS. The HIV-1 capsid has recently become an ART target. Capsid inhibitors block HIV-1 infection at multiple steps, offering advantages over current ART. The cellular metabolite inositol hexakisphosphate (IP6) binds the HIV-1 capsid, stabilizing it in vitro. However, the function of this interaction in target cells is unclear. Our results imply that IP6 stabilizes the incoming HIV-1 capsid in cells, thus limiting the antiviral efficiency of capsid-destabilizing antivirals. We present a model of capsid inhibitor function and propose that targeting of the IP6-binding site in conjunction with capsid inhibitors currently in development will lead to more robust ART.


Anti-HIV Agents/pharmacology , Capsid/drug effects , HIV-1/drug effects , Host-Pathogen Interactions/drug effects , Inositol Phosphates/metabolism , Phytic Acid/metabolism , Capsid Proteins , Cell Line , Humans
6.
PLoS Pathog ; 17(3): e1009389, 2021 Mar.
Article En | MEDLINE | ID: mdl-33651846

[This corrects the article DOI: 10.1371/journal.ppat.1009190.].

7.
PLoS Pathog ; 17(1): e1009190, 2021 01.
Article En | MEDLINE | ID: mdl-33476323

Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.


CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Inositol Phosphates/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/virology , Virus Assembly , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Gene Products, gag/metabolism , HIV Infections/immunology , HIV Infections/metabolism , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Cells, Cultured , Virion/physiology
8.
mBio ; 11(5)2020 09 29.
Article En | MEDLINE | ID: mdl-32994325

Lentiviral DNA integration favors transcriptionally active chromatin. We previously showed that the interaction of human immunodeficiency virus type 1 (HIV-1) capsid with cleavage and polyadenylation specificity factor 6 (CPSF6) localizes viral preintegration complexes (PICs) to nuclear speckles for integration into transcriptionally active speckle-associated domains (SPADs). In the absence of the capsid-CPSF6 interaction, PICs uncharacteristically accumulate at the nuclear periphery and target heterochromatic lamina-associated domains (LADs) for integration. The integrase-binding protein lens epithelium-derived growth factor (LEDGF)/p75 in contrast to CPSF6 predominantly functions to direct HIV-1 integration to interior regions of transcription units. Though CPSF6 and LEDGF/p75 can reportedly interact with the capsid and integrase proteins of both primate and nonprimate lentiviruses, the extents to which these different viruses target SPADs versus LADs, as well as their dependencies on CPSF6 and LEDGF/p75 for integration targeting, are largely unknown. Here, we mapped 5,489,157 primate and nonprimate lentiviral integration sites in HEK293T and Jurkat T cells as well as derivative cells that were knocked out or knocked down for host factor expression. Despite marked preferences of all lentiviruses to target genes for integration, nonprimate lentiviruses only marginally favored SPADs, with corresponding upticks in LAD-proximal integration. While LEDGF/p75 knockout disrupted the intragenic integration profiles of all lentiviruses similarly, CPSF6 depletion specifically counteracted SPAD integration targeting by primate lentiviruses. CPSF6 correspondingly failed to appreciably interact with nonprimate lentiviral capsids. We conclude that primate lentiviral capsid proteins evolved to interact with CPSF6 to optimize PIC localization for integration into transcriptionally active SPADs.IMPORTANCE Integration is the defining step of the retroviral life cycle and underlies the inability to cure HIV/AIDS through the use of intensified antiviral therapy. The reservoir of latent, replication-competent proviruses that forms early during HIV infection reseeds viremia when patients discontinue medication. HIV cure research is accordingly focused on the factors that guide provirus formation and associated chromatin environments that regulate transcriptional reactivation, and studies of orthologous infectious agents such as nonprimate lentiviruses can inform basic principles of HIV biology. HIV-1 utilizes the integrase-binding protein LEDGF/p75 and the capsid interactor CPSF6 to target speckle-associated domains (SPADs) for integration. However, the extent to which these two host proteins regulate integration of other lentiviruses is largely unknown. Here, we mapped millions of retroviral integration sites in cell lines that were depleted for LEDGF/p75 and/or CPSF6. Our results reveal that primate lentiviruses uniquely target SPADs for integration in a CPSF6-dependent manner.


Lentivirus/genetics , Primates/genetics , Virus Integration/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Animals , Cats/genetics , Cats/virology , Cattle/genetics , Cattle/virology , Cell Line , Evolution, Molecular , HEK293 Cells , Horses/genetics , Horses/virology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Jurkat Cells , Macaca mulatta/genetics , Macaca mulatta/virology , Mice/genetics , Mice/virology , Primates/virology , Virus Replication
9.
J Biol Chem ; 295(15): 5081-5094, 2020 04 10.
Article En | MEDLINE | ID: mdl-32152226

Cleavage and polyadenylation specificity factor 6 (CPSF6) is a cellular protein involved in mRNA processing. Emerging evidence suggests that CPSF6 also plays key roles in HIV-1 infection, specifically during nuclear import and integration targeting. However, the cellular and molecular mechanisms that regulate CPSF6 expression are largely unknown. In this study, we report a post-transcriptional mechanism that regulates CPSF6 via the cellular microRNA miR-125b. An in silico analysis revealed that the 3'UTR of CPSF6 contains a miR-125b-binding site that is conserved across several mammalian species. Because miRNAs repress protein expression, we tested the effects of miR-125b expression on CPSF6 levels in miR-125b knockdown and over-expression experiments, revealing that miR-125b and CPSF6 levels are inversely correlated. To determine whether miR-125b post-transcriptionally regulates CPSF6, we introduced the 3'UTR of CPSF6 mRNA into a luciferase reporter and found that miR-125b negatively regulates CPSF6 3'UTR-driven luciferase activity. Accordingly, mutations in the miR-125b seed sequence abrogated the regulatory effect of the miRNA on the CPSF6 3'UTR. Finally, pulldown experiments demonstrated that miR-125b physically interacts with CPSF6 3'UTR. Interestingly, HIV-1 infection down-regulated miR-125b expression concurrent with up-regulation of CPSF6. Notably, miR-125b down-regulation in infected cells was not due to reduced pri-miRNA or pre-miRNA levels. However, miR-125b down-regulation depended on HIV-1 reverse transcription but not viral DNA integration. These findings establish a post-transcriptional mechanism that controls CPSF6 expression and highlight a novel function of miR-125b during HIV-host interaction.


3' Untranslated Regions/genetics , Capsid/metabolism , HIV Infections/virology , HIV-1/physiology , MicroRNAs/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , Binding Sites , HIV Infections/genetics , HIV Infections/metabolism , Humans , MicroRNAs/metabolism , Mutation , Virus Integration , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/genetics
10.
J Virol ; 93(21)2019 11 01.
Article En | MEDLINE | ID: mdl-31413124

Particle maturation is a critical step in the HIV-1 replication cycle that requires proteolytic cleavage of the Gag polyprotein into its constitutive proteins: the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 proteins. The accurate and efficient cleavage of Gag is essential for virion infectivity; inhibitors of the viral protease are potent antivirals, and substitutions in Gag that prevent its cleavage result in reduced HIV-1 infectivity. In a previous study, a mutation inhibiting cleavage at the MA-CA junction was observed to potently inhibit virus infection: incorporation of small amounts of uncleaved MA-CA protein into HIV-1 particles inhibited infectivity by ∼95%, and the resulting viral particles exhibited aberrant capsids. Here we report a detailed mechanistic analysis of HIV-1 particles bearing uncleaved MA-CA protein. We show that the particles contain stable cores and can efficiently saturate host restriction by TRIMCyp in target cells. We further show that MA-CA associates with CA in particles without detectably affecting the formation of intermolecular CA interfaces. Incorporation of MA-CA did not markedly affect reverse transcription in infected cells, but nuclear entry was impaired and integration targeting was altered. Additionally, results from mutational analysis of Gag revealed that membrane-binding elements of MA contribute to the antiviral activity of uncleaved MA-CA protein. Our results suggest that small amounts of partially processed Gag subunits coassemble with CA during virion maturation, resulting in impaired capsid functions.IMPORTANCE To become infectious, newly formed HIV-1 particles undergo a process of maturation in which the viral polyproteins are cleaved into smaller components. A previous study demonstrated that inclusion of even small quantities of an uncleavable mutant Gag polyprotein results in a strong reduction in virus infectivity. Here we show that the mechanism of transdominant inhibition by uncleavable Gag involves inhibition of nuclear entry and alteration of viral integration sites. Additionally, the results of mutational analysis suggest that the membrane-binding activity of Gag is a major requirement for the antiviral activity. These results further define the antiviral mechanism of uncleavable Gag, which may be useful for exploiting this effect to develop new antivirals.


Capsid Proteins/metabolism , Cell Nucleus/metabolism , HIV Infections/virology , Viral Fusion Proteins/metabolism , Viral Matrix Proteins/metabolism , Virus Integration , gag Gene Products, Human Immunodeficiency Virus/metabolism , Active Transport, Cell Nucleus , Capsid Proteins/genetics , Cell Nucleus/virology , HEK293 Cells , HIV-1/physiology , Humans , Nucleocapsid , Reverse Transcription , Viral Fusion Proteins/genetics , Viral Matrix Proteins/genetics , Virion , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/genetics
11.
Cell Host Microbe ; 24(3): 392-404.e8, 2018 09 12.
Article En | MEDLINE | ID: mdl-30173955

HIV-1 integration into the host genome favors actively transcribed genes. Prior work indicated that the nuclear periphery provides the architectural basis for integration site selection, with viral capsid-binding host cofactor CPSF6 and viral integrase-binding cofactor LEDGF/p75 contributing to selection of individual sites. Here, by investigating the early phase of infection, we determine that HIV-1 traffics throughout the nucleus for integration. CPSF6-capsid interactions allow the virus to bypass peripheral heterochromatin and penetrate the nuclear structure for integration. Loss of interaction with CPSF6 dramatically alters virus localization toward the nuclear periphery and integration into transcriptionally repressed lamina-associated heterochromatin, while loss of LEDGF/p75 does not significantly affect intranuclear HIV-1 localization. Thus, CPSF6 serves as a master regulator of HIV-1 intranuclear localization by trafficking viral preintegration complexes away from heterochromatin at the periphery toward gene-dense chromosomal regions within the nuclear interior.


Capsid/metabolism , Cell Nucleus/virology , DNA, Viral/genetics , HIV Infections/metabolism , HIV-1/physiology , Virus Integration , mRNA Cleavage and Polyadenylation Factors/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA, Viral/metabolism , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Host-Pathogen Interactions , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Protein Binding , Virus Replication , mRNA Cleavage and Polyadenylation Factors/genetics
12.
Mol Cell ; 69(1): 62-74.e4, 2018 01 04.
Article En | MEDLINE | ID: mdl-29276085

Alternative mRNA processing is a critical mechanism for proteome expansion and gene regulation in higher eukaryotes. The SR family proteins play important roles in splicing regulation. Intriguingly, mammalian genomes encode many poorly characterized SR-like proteins, including subunits of the mRNA 3'-processing factor CFIm, CFIm68 and CFIm59. Here we demonstrate that CFIm functions as an enhancer-dependent activator of mRNA 3' processing. CFIm regulates global alternative polyadenylation (APA) by specifically binding and activating enhancer-containing poly(A) sites (PASs). Importantly, the CFIm activator functions are mediated by the arginine-serine repeat (RS) domains of CFIm68/59, which bind specifically to an RS-like region in the CPSF subunit Fip1, and this interaction is inhibited by CFIm68/59 hyper-phosphorylation. The remarkable functional similarities between CFIm and SR proteins suggest that interactions between RS-like domains in regulatory and core factors may provide a common activation mechanism for mRNA 3' processing, splicing, and potentially other steps in RNA metabolism.


Alternative Splicing/genetics , Gene Expression Regulation/genetics , Polyadenylation , RNA, Messenger/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Animals , Cell Line , Enhancer Elements, Genetic/genetics , Gene Knockout Techniques , HEK293 Cells , Humans , Phosphorylation , Poly A/metabolism , Protein Domains/genetics , RNA-Binding Proteins/metabolism , Sf9 Cells , Spodoptera
13.
J Virol ; 90(12): 5808-5823, 2016 06 15.
Article En | MEDLINE | ID: mdl-27076642

UNLABELLED: The viral capsid of HIV-1 interacts with a number of host factors to orchestrate uncoating and regulate downstream events, such as reverse transcription, nuclear entry, and integration site targeting. PF-3450074 (PF74), an HIV-1 capsid-targeting low-molecular-weight antiviral compound, directly binds to the capsid (CA) protein at a site also utilized by host cell proteins CPSF6 and NUP153. Here, we found that the dose-response curve of PF74 is triphasic, consisting of a plateau and two inhibitory phases of different slope values, consistent with a bimodal mechanism of drug action. High PF74 concentrations yielded a steep curve with the highest slope value among different classes of known antiretrovirals, suggesting a dose-dependent, cooperative mechanism of action. CA interactions with both CPSF6 and cyclophilin A (CypA) were essential for the unique dose-response curve. A shift of the steep curve at lower drug concentrations upon blocking the CA-CypA interaction suggests a protective role for CypA against high concentrations of PF74. These findings, highlighting the unique characteristics of PF74, provide a model in which its multimodal mechanism of action of both noncooperative and cooperative inhibition by PF74 is regulated by interactions of cellular proteins with incoming viral capsids. IMPORTANCE: PF74, a novel capsid-targeting antiviral against HIV-1, shares its binding site in the viral capsid protein (CA) with the host factors CPSF6 and NUP153. This work reveals that the dose-response curve of PF74 consists of two distinct inhibitory phases that are differentially regulated by CA-interacting host proteins. PF74's potency depended on these CA-binding factors at low doses. In contrast, the antiviral activity of high PF74 concentrations was attenuated by cyclophilin A. These observations provide novel insights into both the mechanism of action of PF74 and the roles of host factors during the early steps of HIV-1 infection.


Anti-HIV Agents/pharmacology , Capsid/metabolism , HIV-1/drug effects , Host-Pathogen Interactions , Indoles/pharmacology , Nuclear Pore Complex Proteins/metabolism , Phenylalanine/analogs & derivatives , mRNA Cleavage and Polyadenylation Factors/metabolism , Binding Sites , Capsid/drug effects , Capsid Proteins/metabolism , Cyclophilin A/metabolism , Cyclophilin A/pharmacology , HEK293 Cells , HIV-1/physiology , HeLa Cells , Humans , Nuclear Pore Complex Proteins/genetics , Phenylalanine/pharmacology , Reverse Transcription/drug effects , Virus Replication/drug effects , mRNA Cleavage and Polyadenylation Factors/deficiency , mRNA Cleavage and Polyadenylation Factors/genetics
14.
J Biol Chem ; 291(22): 11809-19, 2016 May 27.
Article En | MEDLINE | ID: mdl-26994143

HIV-1 favors integration into active genes and gene-enriched regions of host cell chromosomes, thus maximizing the probability of provirus expression immediately after integration. This requires cleavage and polyadenylation specificity factor 6 (CPSF6), a cellular protein involved in pre-mRNA 3' end processing that binds HIV-1 capsid and connects HIV-1 preintegration complexes to intranuclear trafficking pathways that link integration to transcriptionally active chromatin. CPSF6 together with CPSF5 and CPSF7 are known subunits of the cleavage factor I (CFIm) 3' end processing complex; however, CPSF6 could participate in additional protein complexes. The molecular mechanisms underpinning the role of CPSF6 in HIV-1 infection remain to be defined. Here, we show that a majority of cellular CPSF6 is incorporated into the CFIm complex. HIV-1 capsid recruits CFIm in a CPSF6-dependent manner, which suggests that the CFIm complex mediates the known effects of CPSF6 in HIV-1 infection. To dissect the roles of CPSF6 and other CFIm complex subunits in HIV-1 infection, we analyzed virologic and integration site targeting properties of a CPSF6 variant with mutations that prevent its incorporation into CFIm We show, somewhat surprisingly, that CPSF6 incorporation into CFIm is not required for its ability to direct preferential HIV-1 integration into genes. The CPSF5 and CPSF7 subunits appear to have only a minor, if any, role in this process even though they appear to facilitate CPSF6 binding to capsid. Thus, CPSF6 alone controls the key molecular interactions that specify HIV-1 preintegration complex trafficking to active chromatin.


Capsid/metabolism , HIV-1/physiology , RNA, Messenger/metabolism , Virus Integration , mRNA Cleavage and Polyadenylation Factors/metabolism , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , Humans , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/genetics
15.
Proc Natl Acad Sci U S A ; 113(8): E1054-63, 2016 Feb 23.
Article En | MEDLINE | ID: mdl-26858452

Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies.


Capsid/metabolism , Chromatin/metabolism , HIV-1/physiology , Virus Integration/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Chromatin/genetics , Chromatin/virology , Gene Knockdown Techniques , HEK293 Cells , Humans , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , mRNA Cleavage and Polyadenylation Factors/genetics
16.
PLoS Pathog ; 10(12): e1004536, 2014 Dec.
Article En | MEDLINE | ID: mdl-25474690

Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs) kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs) and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.


Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Replication , DNA, Viral/biosynthesis , Simian virus 40/physiology , Virus Replication/physiology , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line , DNA, Viral/genetics , Humans
17.
PLoS Pathog ; 9(4): e1003283, 2013.
Article En | MEDLINE | ID: mdl-23592994

Mutation of DNA damage checkpoint signaling kinases ataxia telangiectasia-mutated (ATM) or ATM- and Rad3-related (ATR) results in genomic instability disorders. However, it is not well understood how the instability observed in these syndromes relates to DNA replication/repair defects and failed checkpoint control of cell cycling. As a simple model to address this question, we have studied SV40 chromatin replication in infected cells in the presence of inhibitors of ATM and ATR activities. Two-dimensional gel electrophoresis and southern blotting of SV40 chromatin replication products reveal that ATM activity prevents accumulation of unidirectional replication products, implying that ATM promotes repair of replication-associated double strand breaks. ATR activity alleviates breakage of a functional fork as it converges with a stalled fork. The results suggest that during SV40 chromatin replication, endogenous replication stress activates ATM and ATR signaling, orchestrating the assembly of genome maintenance machinery on viral replication intermediates.


Ataxia Telangiectasia Mutated Proteins/metabolism , Chromatin/metabolism , DNA Replication , Simian virus 40/physiology , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Caffeine/pharmacology , Cell Cycle Checkpoints , Cell Line , Chlorocebus aethiops , DNA Damage , DNA Repair/genetics , DNA Replication/genetics , Humans , Morpholines/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Pyrones/pharmacology , Simian virus 40/genetics , Virus Replication
19.
J Biol Chem ; 287(32): 26854-66, 2012 Aug 03.
Article En | MEDLINE | ID: mdl-22700977

DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.


DNA Polymerase I/metabolism , DNA Primase/metabolism , Base Sequence , Blotting, Southern , DNA Polymerase I/chemistry , DNA Primase/chemistry , DNA Primers , DNA Replication , Humans , Models, Molecular , Molecular Sequence Data , Simian virus 40/genetics
...