Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 12(4): 573-86, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26190104

RESUMEN

Jarid2 is part of the Polycomb Repressor complex 2 (PRC2) responsible for genome-wide H3K27me3 deposition. Unlike other PRC2-deficient embryonic stem cells (ESCs), however, Jarid2-deficient ESCs show a severe differentiation block, altered colony morphology, and distinctive patterns of deregulated gene expression. Here, we show that Jarid2(-/-) ESCs express constitutively high levels of Nanog but reduced PCP signaling components Wnt9a, Prickle1, and Fzd2 and lowered ß-catenin activity. Depletion of Wnt9a/Prickle1/Fzd2 from wild-type ESCs or overexpression of Nanog largely phenocopies these cellular defects. Co-culture of Jarid2(-/-) with wild-type ESCs restores variable Nanog expression and ß-catenin activity and can partially rescue the differentiation block of mutant cells. In addition, we show that ESCs lacking Jarid2 or Wnt9a/Prickle1/Fzd2 or overexpressing Nanog induce multiple ICM formation when injected into normal E3.5 blastocysts. These data describe a previously unrecognized role for Jarid2 in regulating a core pluripotency and Wnt/PCP signaling circuit that is important for ESC differentiation and for pre-implantation development.


Asunto(s)
Blastocisto/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Proteína Homeótica Nanog , Complejo Represivo Polycomb 2/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
2.
Cell Cycle ; 12(20): 3253-61, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24036550

RESUMEN

We recently reported that mouse embryonic stem cells (ESCs) in S/G 2 are more efficient at reprogramming somatic cells than ESCs at other stages of the cell cycle. We also provided evidence that DNA replication is induced in the nuclei of somatic partners upon fusion with ESC partners, and showed that this was critical for their conversion toward a pluripotent state. (1) Here we have used counterflow centrifugal elutriation to enrich for ESCs at different cell cycle phases, so as to examine in detail the properties of S/G 2 phase cells. This revealed that the replication and organization of DAPI-intense heterochromatin in ESCs is unusual in two respects. First, replication of heterochromatin occurred earlier during S phase and was associated with precocious H3S10 phosphorylation. Second, heterochromatin protein 1 α (HP1α), which invariably marks DAPI-intense and H3K9me3-enriched pericentromeric domains in mouse somatic cells, (2) was not necessarily associated with these H3K9me3-enriched domains in undifferentiated ESCs. These data, which complement recent replication timing (3) and electron spectroscopic imaging (ESI) analyses, (4) suggest that heterochromatin is atypical in ESCs. Interestingly, as these unusual features were rapidly acquired by somatic nuclei upon ESC fusion-mediated reprogramming, our results suggest that fundamental changes in cell cycle structure and heterochromatin dynamics may be important for conferring pluripotency.


Asunto(s)
Reprogramación Celular , Replicación del ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Heterocromatina/metabolismo , Animales , Recuento de Células , Ciclo Celular/genética , Fusión Celular , Núcleo Celular/metabolismo , Reprogramación Celular/genética , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/genética , Epigénesis Genética , Histonas/metabolismo , Humanos , Metilación , Ratones , Fosfoserina/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
3.
Mol Cell ; 49(6): 1023-33, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23453809

RESUMEN

Genomic imprinting directs the allele-specific marking and expression of loci according to their parental origin. Differential DNA methylation at imprinted control regions (ICRs) is established in gametes and, although largely preserved through development, can be experimentally reset by fusing somatic cells with embryonic germ cell (EGC) lines. Here, we show that the Ten-Eleven Translocation proteins Tet1 and Tet2 participate in the efficient erasure of imprints in this model system. The fusion of B cells with EGCs initiates pluripotent reprogramming, in which rapid re-expression of Oct4 is accompanied by an accumulation of 5-hydroxymethylcytosine (5hmC) at several ICRs. Tet2 was required for the efficient reprogramming capacity of EGCs, whereas Tet1 was necessary to induce 5-methylcytosine oxidation specifically at ICRs. These data show that the Tet1 and Tet2 proteins have discrete roles in cell-fusion-mediated pluripotent reprogramming and imprint erasure in somatic cells.


Asunto(s)
Fusión Celular , Proteínas de Unión al ADN/fisiología , Impresión Genómica , Proteínas Proto-Oncogénicas/fisiología , 5-Metilcitosina/análogos & derivados , Animales , Linfocitos B/citología , Secuencia de Bases , Línea Celular , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN , Dioxigenasas , Células Madre Embrionarias/citología , Expresión Génica , Células Germinativas/citología , Proteínas Fluorescentes Verdes/biosíntesis , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Datos de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas/genética , Proteínas/metabolismo , ARN Largo no Codificante/genética , Análisis de Secuencia de ADN
4.
Cell ; 152(4): 873-83, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415233

RESUMEN

Embryonic stem cells (ESCs) can instruct the conversion of differentiated cells toward pluripotency following cell-to-cell fusion by a mechanism that is rapid but poorly understood. Here, we used centrifugal elutriation to enrich for mouse ESCs at sequential stages of the cell cycle and showed that ESCs in S/G2 phases have an enhanced capacity to dominantly reprogram lymphocytes and fibroblasts in heterokaryon and hybrid assays. Reprogramming success was associated with an ability to induce precocious nucleotide incorporation within the somatic partner nuclei in heterokaryons. BrdU pulse-labeling experiments revealed that virtually all successfully reprogrammed somatic nuclei, identified on the basis of Oct4 re-expression, had undergone DNA synthesis within 24 hr of fusion with ESCs. This was essential for successful reprogramming because drugs that inhibited DNA polymerase activity effectively blocked pluripotent conversion. These data indicate that nucleotide incorporation is an early and critical event in the epigenetic reprogramming of somatic cells in experimental ESC-heterokaryons.


Asunto(s)
Replicación del ADN , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Linfocitos B/citología , Fusión Celular , Núcleo Celular/metabolismo , Reprogramación Celular , Células Madre Embrionarias/citología , Fibroblastos/citología , Humanos , Ratones , Nucleótidos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
5.
Curr Opin Genet Dev ; 22(5): 459-65, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22868176

RESUMEN

Pluripotent cells arise within the inner cell mass (ICM) of mammals and have the potential to generate all cell types of the adult organism through a process of commitment and ordered differentiation. Despite many decades of investigation, the mechanisms that guide and stabilise cell fate choice as well as those that can be engineered to promote its reversal, remain only partially resolved. Reprogramming of somatic cells towards a pluripotent-like state can be achieved by several different experimental routes including nuclear transfer, the supply of a defined cocktail of transcription factors, or by fusing somatic cells with a pluripotent stem cell partner. These approaches have been used to demonstrate the remarkable intrinsic epigenetic plasticity of many terminally differentiated cell types, as well as to define the factors that are required for pluripotent conversion. In this review we summarise some recent advances using cell fusion-based studies to better understand the basis of pluripotency and the epigenetic mechanisms that promote cell type inter-conversion.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Fusión Celular/métodos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Epigenómica/métodos , Humanos , Técnicas de Transferencia Nuclear , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Philos Trans R Soc Lond B Biol Sci ; 366(1575): 2260-5, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21727131

RESUMEN

Reprogramming differentiated cells towards pluripotency can be achieved by different experimental strategies including the forced expression of specific 'inducers' and nuclear transfer. While these offer unparalleled opportunities to generate stem cells and advance disease modelling, the relatively low levels of successful reprogramming achieved (1-2%) makes a direct analysis of the molecular events associated with productive reprogramming very challenging. The generation of transient heterokaryons between human differentiated cells (such as lymphocytes or fibroblasts) and mouse pluripotent stem cell lines results in a much higher frequency of successful conversion (15% SSEA4 expressing cells) and provides an alternative approach to study early events during reprogramming. Under these conditions, differentiated nuclei undergo a series of remodelling events before initiating human pluripotent gene expression and silencing differentiation-associated genes. When combined with genetic or RNAi-based approaches and high-throughput screens, heterokaryon studies can provide important new insights into the factors and mechanisms required to reprogramme unipotent cells towards pluripotency.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Animales , Técnicas Citológicas/métodos , Humanos
7.
Blood ; 117(1): 83-7, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20876850

RESUMEN

Many lineage-specific developmental regulator genes are transcriptionally primed in embryonic stem (ES) cells; RNA Pol(II) is bound at their promoters but is prevented from productive elongation by the activity of polycomb repressive complexes (PRC) 1 and 2. This epigenetically poised state is thought to enable ES cells to rapidly execute multiple differentiation programs and is recognized by a simultaneous enrichment for trimethylation of lysine 4 and trimethylation of lysine 27 of histone H3 (bivalent chromatin) across promoter regions. Here we show that the chromatin profile of this important cohort of genes is progressively modified as ES cells differentiate toward blood-forming precursors. Surprisingly however, neural specifying genes, such as Nkx2-2, Nkx2-9, and Sox1, remain bivalent and primed even in committed hemangioblasts, as conditional deletion of PRC1 results in overt and inappropriate expression of neural genes in hemangioblasts. These data reinforce the importance of PRC1 for normal hematopoietic differentiation and reveal an unexpected epigenetic plasticity of mesoderm-committed hemangioblasts.


Asunto(s)
Células Madre Embrionarias/metabolismo , Epigénesis Genética , Hemangioblastos/fisiología , Proteínas de Homeodominio/genética , Proteínas Represoras/fisiología , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/citología , Proteínas Fetales/genética , Proteínas Fluorescentes Verdes/genética , Histonas/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Integrasas/metabolismo , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra
8.
FEBS J ; 277(1): 197-209, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19961538

RESUMEN

An increasing amount of expressed sequence tag (EST) and genomic data, predominantly for the cnidarians Acropora, Hydra and Nematostella, reveals that cnidarians have a high genomic complexity, despite being one of the morphologically simplest multicellular animals. Considering the diversity of cnidarians, we performed an EST project on the hydroid Hydractinia echinata, to contribute towards a broader coverage of this phylum. After random sequencing of almost 9000 clones, EST characterization revealed a broad diversity in gene content. Corroborating observations in other cnidarians, Hydractinia sequences exhibited a higher sequence similarity to vertebrates than to ecdysozoan invertebrates. A significant number of sequences were hitherto undescribed in metazoans, suggesting that these may be either cnidarian innovations or ancient genes lost in the bilaterian genomes analysed so far. However, we cannot rule out some degree of contamination from commensal bacteria. The identification of unique Hydractinia sequences emphasizes that the acquired genomic information generated so far is not large enough to be representative of the highly diverse cnidarian phylum. Finally, a database was created to store all the acquired information (http://www.mchips.org/hydractinia_echinata.html).


Asunto(s)
Hidrozoos/genética , Animales , Cnidarios/clasificación , Cnidarios/genética , ADN Complementario/genética , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Hidrozoos/clasificación , Datos de Secuencia Molecular , Especificidad de la Especie
9.
Dev Comp Immunol ; 30(3): 275-81, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-15975655

RESUMEN

Tachylectin-related proteins are a recently characterized group of pattern recognition molecules, functioning in the innate immunity of various animals, from the ancient sponges to vertebrates. Tachylectins are characterized by six internal tandem repeats forming beta-propeller domains. We have identified and characterized a tachylectin-related gene in the colonial marine hydroid, Hydractinia echinata. The predicted gene product, termed CTRN, contained an N-terminal signal peptide and had a well-conserved tachylectin-like structure. RT-PCR analyses revealed only post-metamorphic expression while no mRNA was detected during embryonic development or in planula larvae. Exposure of colonies to LPS under conditions known to activate an immune response in Hydractinia did not result in upregulation of the gene. In situ hybridization analysis of metamorphosed animals detected CTRN transcripts only in a small subpopulation of neurons and their precursor cells, localized in a ring-like structure around the mouth of polyps. The same ring-like structure of CTRN expressing neurons was also observed in young polyp buds, predicting the position of the future mouth. This type of expression pattern can hardly be attributed to an immune-relevant gene. Thus, despite high structural similarity to tachylectins, this cnidarian member of this group seems to be an exception to all other tachylectins identified so far as it seems to have no function in cnidarian innate immunity.


Asunto(s)
Hidrozoos/química , Hidrozoos/genética , Lectinas/química , Lectinas/inmunología , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Hidrozoos/crecimiento & desarrollo , Hidrozoos/inmunología , Lectinas/genética , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...