Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928440

RESUMEN

Water is a major requirement for our bodies, and alkaline water has induced an antioxidant response in a model of natural aging. A series of recent reports have shown that aging is related to reduced water intake. Hydrogen-rich water has been suggested to exert a general antioxidant effect in relation to both improving lifestyle and preventing a series of diseases. Here, we wanted to investigate the effect of the daily intake of hydrogen-rich alkaline water (HAW) in counteracting the redox imbalance induced in a model of H2O2-treated mice. Mice were treated with H2O2 for two weeks and either left untreated or supplied with HAW. The results show that HAW induced a reduction in the ROS plasmatic levels that was consistent with the increase in the circulating glutathione. At the same time, the reduction in plasmatic 8-hydroxy-2'-deoxyguanosine was associated with reduced DNA damage in the whole body. Further analysis of the spleen and bone marrow cells showed a reduced ROS content consistent with a significantly reduced mitochondrial membrane potential and superoxide accumulation and an increase in spontaneous proliferation. This study provides evidence for a clear preventive and curative effect of HAW in a condition of systemic toxic condition and redox imbalance.


Asunto(s)
Peróxido de Hidrógeno , Hidrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno , Agua , Animales , Ratones , Peróxido de Hidrógeno/metabolismo , Hidrógeno/farmacología , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Agua/química , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Daño del ADN/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Glutatión/metabolismo , Suplementos Dietéticos
2.
Mol Ther ; 32(1): 152-167, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37990493

RESUMEN

Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.


Asunto(s)
Melanoma , MicroARNs , Humanos , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , MicroARNs/farmacología
3.
Vaccines (Basel) ; 11(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37766110

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 enters the host by infecting nasal ciliated cells. Then, the virus can spread towards the oropharyngeal cavity and the pulmonary tissues. The antiviral adaptive immunity is promptly induced in response to the virus's detection, with virus-specific T-lymphocytes appearing before antiviral antibodies. Both the breadth and potency of antiviral CD8+ T-cell immunity have a key role in containing viral spread and disease severity. Current anti-SARS-CoV-2 vaccines do not impede the virus's replication in the upper respiratory tract, and there is consensus on the fact that the best potency of the antiviral immune response in both blood and the upper respiratory tract can be reached upon infection in vaccinees (i.e., breakthrough infection). However, whether the antiviral CD8+ T-cells developing in response to the breakthrough infection in the upper respiratory tract diffuse to the lungs is also still largely unknown. To fill the gap, we checked the CD8+ T-cell immunity elicited after infection of K18-hACE2 transgenic mice both at 3 weeks and 3 months after anti-spike vaccination. Virus-specific CD8+ T-cell immunity was monitored in both blood and the lungs before and after infection. By investigating the de novo generation of the CD8+ T-cells specific for SARS-CoV-2 viral proteins, we found that both membrane (M) and/or nucleocapsid (N)-specific CD8+ T-cells were induced at comparable levels in the blood of both unvaccinated and vaccinated mice. Conversely, N-specific CD8+ T-cells were readily found in the lungs of the control mice but were either rare or absent in those of vaccinated mice. These results support the idea that the hybrid cell immunity developing after asymptomatic/mild breakthrough infection strengthens the antiviral cell immunity in the lungs only marginally, implying that the direct exposition of viral antigens is required for the induction of an efficient antiviral cell immunity in the lungs.

4.
NPJ Vaccines ; 8(1): 83, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268624

RESUMEN

Induction of effective immunity in the lungs should be a requisite for any vaccine designed to control the severe pathogenic effects generated by respiratory infectious agents. We recently provided evidence that the generation of endogenous extracellular vesicles (EVs) engineered for the incorporation of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 Nucleocapsid (N) protein induced immunity in the lungs of K18-hACE2 transgenic mice, which then can survive the lethal virus infection. However, nothing is known about the ability of the N-specific CD8+ T cell immunity in controlling viral replication in the lungs, a major pathogenic signature of severe disease in humans. To fill the gap, we investigated the immunity generated in the lungs by N-engineered EVs in terms of induction of N-specific effectors and resident memory CD8+ T lymphocytes before and after virus challenge carried out three weeks and three months after boosting. At the same time points, viral replication extents in the lungs were evaluated. Three weeks after the second immunization, virus replication was reduced in mice best responding to vaccination by more than 3-logs compared to the control group. The impaired viral replication matched with a reduced induction of Spike-specific CD8+ T lymphocytes. The antiviral effect appeared similarly strong when the viral challenge was carried out 3 months after boosting, and associated with the persistence of N-specific CD8+ T-resident memory lymphocytes. In view of the quite low mutation rate of the N protein, the present vaccine strategy has the potential to control the replication of all emerging variants.

5.
Antioxidants (Basel) ; 12(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37371899

RESUMEN

Plant-derived exosomes (PDEs) are receiving much attention as a natural source of antioxidants. Previous research has shown that PDEs contain a series of bioactives and that their content varies depending on the fruit or vegetable source. It has also been shown that fruits and vegetables derived from organic agriculture produce more exosomes, are safer, free of toxic substances, and contain more bioactives. The aim of this study was to investigate the ability of orally administered mixes of PDE (Exocomplex®) to restore the physiological conditions of mice treated for two weeks with hydrogen peroxide (H2O2), compared with mice left untreated after the period of H2O2 administration and mice that received only water during the experimental period. The results showed that Exocomplex® had a high antioxidant capacity and contained a series of bioactives, including Catalase, Glutathione (GSH), Superoxide Dismutase (SOD), Ascorbic Acid, Melatonin, Phenolic compounds, and ATP. The oral administration of Exocomplex® to the H2O2-treated mice re-established redox balance with reduced serum levels of both reactive oxygen species (ROS) and malondialdehyde (MDA), but also a general recovery of the homeostatic condition at the organ level, supporting the future use of PDE for health care.

6.
Nat Immunol ; 23(9): 1379-1392, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002648

RESUMEN

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Asunto(s)
Neoplasias de la Mama , Epigénesis Genética , Histona Demetilasas , Interferón Tipo I , Antraciclinas/metabolismo , Antraciclinas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Histona Demetilasas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
7.
J Exp Clin Cancer Res ; 41(1): 86, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260172

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) are responsible for the metastatic dissemination of colorectal cancer (CRC) to the liver, lungs and lymph nodes. CTCs rarity and heterogeneity strongly limit the elucidation of their biological features, as well as preclinical drug sensitivity studies aimed at metastasis prevention. METHODS: We generated organoids from CTCs isolated from an orthotopic CRC xenograft model. CTCs-derived organoids (CTCDOs) were characterized through proteome profiling, immunohistochemistry, immunofluorescence, flow cytometry, tumor-forming capacity and drug screening assays. The expression of intra- and extracellular markers found in CTCDOs was validated on CTCs isolated from the peripheral blood of CRC patients. RESULTS: CTCDOs exhibited a hybrid epithelial-mesenchymal transition (EMT) state and an increased expression of stemness-associated markers including the two homeobox transcription factors Goosecoid and Pancreatic Duodenal Homeobox Gene-1 (PDX1), which were also detected in CTCs from CRC patients. Functionally, CTCDOs showed a higher migratory/invasive ability and a different response to pathway-targeted drugs as compared to xenograft-derived organoids (XDOs). Specifically, CTCDOs were more sensitive than XDOs to drugs affecting the Survivin pathway, which decreased the levels of Survivin and X-Linked Inhibitor of Apoptosis Protein (XIAP) inducing CTCDOs death. CONCLUSIONS: These results indicate that CTCDOs recapitulate several features of colorectal CTCs and may be used to investigate the features of metastatic CRC cells, to identify new prognostic biomarkers and to devise new potential strategies for metastasis prevention.


Asunto(s)
Neoplasias Colorrectales , Células Neoplásicas Circulantes , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/fisiología , Humanos , Células Neoplásicas Circulantes/metabolismo , Organoides/metabolismo , Células Madre/metabolismo
8.
Viruses ; 14(2)2022 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-35215922

RESUMEN

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with the Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses of 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , Vesículas Extracelulares/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Antígenos Virales/administración & dosificación , Antígenos Virales/genética , COVID-19/inmunología , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Humanos , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vacunación
9.
J Enzyme Inhib Med Chem ; 35(1): 657-664, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32106720

RESUMEN

Telomeres length and telomerase activity are currently considered aging molecular stigmata. Water is a major requirement for our body and water should be alkaline. Recent reports have shown that aging is related to a reduced water intake. We wanted to investigate the effect of the daily intake of alkaline water on the molecular hallmark of aging and the anti-oxidant response. We watered a mouse model of aging with or without alkaline supplementation. After 10 months, we obtained the blood, the bone marrow and the ovaries from both groups. In the blood, we measured the levels of ROS, SOD-1, GSH, and the telomerase activity and analysed the bone marrow and the ovaries for the telomeres length. We found reduced ROS levels and increased SOD-1, GSH, telomerase activity and telomeres length in alkaline supplemented mice. We show here that watering by using alkaline water supplementation highly improves aging at the molecular level.


Asunto(s)
Envejecimiento/efectos de los fármacos , Álcalis/farmacología , Antioxidantes/farmacología , Agua/química , Álcalis/química , Animales , Antioxidantes/administración & dosificación , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad
10.
Antioxidants (Basel) ; 9(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046112

RESUMEN

In recent decades much attention has been paid to how dietary antioxidants may positively affect the human health, including the beneficial effects of fermented foods and beverages. Fermented Papaya Preparation (FPP®) has been shown to represent a valuable approach to obtain systemic antioxidants effect. In this study, we wanted to verify whether FPP® had a clear and scientifically supported in vivo anti-aging effect together with the induction of a systemic antioxidant reaction. To this purpose we daily treated a mouse model suitable for aging studies (C57BL/6J) with FPP®-supplemented water from either the 6th weeks (early treatment) or the 51th weeks (late treatment) of age as compared to mice receiving only tap water. After 10 months of FPP® treatment, we evaluated the telomerase activity, antioxidants and Reactive Oxygen Species ROS plasmatic levels and the telomeres length in the bone marrow and ovaries in both mice groups. The results showed that the daily FPP® assumption induced increase in telomeres length in bone marrow and ovary, together with an increase in the plasmatic levels of telomerase activity, and antioxidant levels, with a decrease of ROS. Early treatment resulted to be more effective, suggesting a potential key role of FPP® in preventing the age-related molecular damages.

11.
Cancer Immunol Immunother ; 68(11): 1791-1804, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31620858

RESUMEN

The perspective of combining cancer vaccines with immunomodulatory drugs is currently regarded as a highly promising approach for boosting tumor-specific T cell immunity and eradicating residual malignant cells. The efficacy of dendritic cell (DC) vaccination in combination with lenalidomide, an anticancer drug effective in several hematologic malignancies, was investigated in a follicular lymphoma (FL) model. First, we evaluated the in vitro activity of lenalidomide in modulating the immune responses of lymphocytes co-cultured with a new DC subset differentiated with IFN-α (IFN-DC) and loaded with apoptotic lymphoma cells. We next evaluated the efficacy of lenalidomide and IFN-DC-based vaccination, either alone or in combination, in hu-PBL-NOD/SCID mice bearing established human lymphoma. We found that lenalidomide reduced Treg frequency and IL-10 production in vitro, improved the formation of immune synapses of CD8 + lymphocytes with lymphoma cells and enhanced anti-lymphoma cytotoxicity. Treatment of lymphoma-bearing mice with either IFN-DC vaccination or lenalidomide led to a significant decrease in tumor growth and lymphoma cell spread. Lenalidomide treatment was shown to substantially inhibit tumor-induced neo-angiogenesis rather than to exert a direct cytotoxic effect on lymphoma cells. Notably, the combined treatment with the vaccine plus lenalidomide was more effective than either single treatment, resulting in the significant regression of established tumors and delayed tumor regrowth upon treatment discontinuation. In conclusion, our data demonstrate that IFN-DC-based vaccination plus lenalidomide exert an additive therapeutic effect in xenochimeric mice bearing established lymphoma. These results may pave the way to evaluate this combination in the clinical ground.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/inmunología , Sinergismo Farmacológico , Factores Inmunológicos/inmunología , Interferón-alfa/inmunología , Lenalidomida/farmacología , Linfoma Folicular/terapia , Animales , Terapia Combinada , Femenino , Humanos , Factores Inmunológicos/farmacología , Linfoma Folicular/inmunología , Linfoma Folicular/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID
12.
Cells ; 8(7)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331091

RESUMEN

Tamoxifen resistance is a major hurdle in the treatment of estrogen receptor (ER)-positive breast cancer. The mechanisms of tamoxifen resistance are not fully understood although several underlying molecular events have been suggested. Recently, we identified autoantibodies reacting with membrane-associated ERα (anti-ERα Abs) in sera of breast cancer patients, able to promote tumor growth. Here, we investigated whether anti-ERα Abs purified from sera of ER-positive breast cancer patients could contribute to tamoxifen resistance. Anti-ERα Abs inhibited tamoxifen-mediated effects on cell cycle and proliferation in MCF-7 cells. Moreover, anti-ERα Abs hampered the tamoxifen-mediated reduction of tumor growth in SCID mice xenografted with breast tumor. Notably, simvastatin-mediated disaggregation of lipid rafts, where membrane-associated ERα is embedded, restored tamoxifen sensitivity, preventing anti-ERα Abs effects. In conclusion, detection of serum anti-ERα Abs may help predict tamoxifen resistance and concur to appropriately inform therapeutic decisions concerning hormone therapy in ER-positive breast cancer patients.


Asunto(s)
Antineoplásicos Hormonales/inmunología , Autoanticuerpos/sangre , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/inmunología , Receptor alfa de Estrógeno/inmunología , Tamoxifeno/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos Hormonales/uso terapéutico , Femenino , Humanos , Células MCF-7 , Ratones , Ratones SCID , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cell Death Dis ; 10(7): 529, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31332161

RESUMEN

Fenretinide is a synthetic retinoid characterized by anticancer activity in preclinical models and favorable toxicological profile, but also by a low bioavailability that hindered its clinical efficacy in former clinical trials. We developed a new formulation of fenretinide complexed with 2-hydroxypropyl-beta-cyclodextrin (nanofenretinide) characterized by an increased bioavailability and therapeutic efficacy. Nanofenretinide was active in cell lines derived from multiple solid tumors, in primary spheroid cultures and in xenografts of lung and colorectal cancer, where it inhibited tumor growth independently from the mutational status of tumor cells. A global profiling of pathways activated by nanofenretinide was performed by reverse-phase proteomic arrays and lipid analysis, revealing widespread repression of the mTOR pathway, activation of apoptotic, autophagic and DNA damage signals and massive production of dihydroceramide, a bioactive lipid with pleiotropic effects on several biological processes. In cells that survived nanofenretinide treatment there was a decrease of factors involved in cell cycle progression and an increase in the levels of p16 and phosphorylated p38 MAPK with consequent block in G0 and early G1. The capacity of nanofenretinide to induce cancer cell death and quiescence, together with its elevated bioavailability and broad antitumor activity indicate its potential use in cancer treatment and chemoprevention.


Asunto(s)
Antineoplásicos/uso terapéutico , Fenretinida/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Clin Cancer Res ; 25(17): 5231-5241, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31171545

RESUMEN

PURPOSE: This study was aimed at evaluating the feasibility, safety, immunologic and clinical responses in patients with follicular lymphoma treated with monocyte-derived dendritic cells generated in the presence of IFNα and GM-CSF (IFN-DC) in combination with low doses of rituximab. PATIENTS AND METHODS: Firstly, we analyzed in vitro and in vivo the immunologic properties of IFN-DC against follicular lymphoma. Thus, we performed a phase I trial in 8 patients with refractory and relapsed follicular lymphoma based on sequential intranodal injections of low-dose of rituximab and unloaded IFN-DC and report the safety, clinical, and immunologic results of the enrolled patients. RESULTS: Preclinical studies indicated that IFN-DC can synergize with rituximab leading to increased cytotoxicity and T-cell tumor infiltration. The clinical evaluation showed that the combined treatment was totally safe. The overall response rate was 50%, PET-negative complete response rate 37%, and remission is still ongoing in 2/4 of responding patients (median follow-up 26 months, range 11-47). Notably, following the combined therapy all patients showed induction/enhancement of T-cell responses by CD107 degranulation or IFNγ ELISPOT assay against patient-specific tumor IGHV sequences. CONCLUSIONS: These results represent the proof-of-principle on the effectiveness of unloaded IFN-DC in inducing durable clinical responses and promoting induction of tumor-specific peripheral T cells, thus suggesting the occurrence of an effective endogenous antitumor vaccination. The overall findings indicate that some unique properties of IFN-DC can be successfully exploited to induce/enhance antitumor responses, thus representing a valuable antitumor strategy for novel and more effective combination therapies in patients with cancer.


Asunto(s)
Células Dendríticas/trasplante , Inmunoterapia Adoptiva/métodos , Linfoma Folicular/terapia , Recurrencia Local de Neoplasia/terapia , Rituximab/administración & dosificación , Adulto , Anciano , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Terapia Combinada , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Resistencia a Antineoplásicos , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Inyecciones Intralinfáticas , Interferón-alfa/farmacología , Linfoma Folicular/inmunología , Linfoma Folicular/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Inducción de Remisión , Terapia Recuperativa , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Mol Oncol ; 13(9): 1836-1854, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31115969

RESUMEN

Emerging data support the rationale of combined therapies in advanced melanoma. Specifically, the combined use of drugs with different mechanisms of action can reduce the probability of selecting resistant clones. To identify agents active against melanoma cells, we screened a library of 349 anti-cancer compounds, currently in clinical use or trials, and selected PIK-75, an inhibitor of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, as the 'top active' drug. PIK-75 was then used alone or in combination with vemurafenib, the first BRAF inhibitor approved for patients with melanoma harboring BRAF mutations. We identified a combined dose of PIK-75 and vemurafenib that inhibited both the PI3K/AKT and mitogen-activated protein kinase pathways, thereby overcoming any compensatory activation. In view of the important tumor suppressor function induced by restoring expression of microRNA (miR)-126 in metastatic melanoma cells, we examined whether miR-126 has a synergistic role when included in a triple combination alongside PIK-75 and vemurafenib. We found that enforced expression of miR-126 (which alone can reduce tumorigenicity) significantly increased PIK-75 activity when used as either a single agent or in combination with vemurafenib. Interestingly, PIK-75 proved to be effective against early passage cell lines derived from patients' biopsies and on melanoma cell lines resistant to either vemurafenib or dabrafenib, thus suggesting that it potentially has the capability to overcome drug resistance. Finally, the synergistic role played by miR-126 in combination with vemurafenib and/or PIK-75 was demonstrated in vivo in mouse xenograft models, in which tumor growth inhibition was associated with increased apoptosis. These results not only show the efficacy of PIK-75 and vemurafenib co-treatment but also indicate that restoration of miR-126 expression in advanced melanoma can enhance their antitumor activity, which may possibly allow dose reduction to decrease adverse events without reducing the therapeutic benefits.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quinasas MAP Reguladas por Señal Extracelular , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma , MicroARNs/metabolismo , Proteínas de Neoplasias , Fosfatidilinositol 3-Quinasas , ARN Neoplásico , Animales , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Hidrazonas/farmacología , Sistema de Señalización de MAP Quinasas/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Desnudos , MicroARNs/genética , Metástasis de la Neoplasia , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Sulfonamidas/farmacología , Vemurafenib/farmacología
16.
J Cell Physiol ; 234(11): 20453-20468, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30982981

RESUMEN

Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro-cultured cardiomyocytes treated with different inflammatory cytokines were analyzed. In addition, to investigate the interplay between tumor growth and cardiac function in an in vivo system, immunocompetent female mice were inoculated with cancer cells and treated with the chemotherapeutic drug doxorubicin at a dosing schedule able to suppress tumor growth without inducing cardiac alterations. Analyses carried out in cardiomyocytes treated with the inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), interleukin 6 (IL-6), IL-8, and IL-1ß revealed severe phenotypic changes, for example, of contractile cytoskeletal elements, mitochondrial membrane potential, mitochondrial reactive oxygen species production and mitochondria network organization. Accordingly, in immunocompetent mice, the tumor growth was accompanied by increased levels of the inflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-8, either in serum or in the heart tissue, together with a significant reduction of ventricular systolic function. The alterations of mitochondria and of microfilament system of cardiomyocytes, due to the systemic inflammation associated with cancer growth, could be responsible for remote cardiac injury and impairment of systolic function observed in vivo.


Asunto(s)
Citocinas/farmacología , Citoesqueleto/efectos de los fármacos , Inflamación/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Interferón gamma/farmacología , Interleucina-6/farmacología , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
17.
Cancers (Basel) ; 11(1)2019 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-30669508

RESUMEN

Prolonged oxidative stress may play a key role in tumor development. Antioxidant molecules are contained in many foods and seem to have a potential role in future anti-tumor strategies. Among the natural antioxidants the beneficial effect of Fermented Papaya (FPP®) is well known. The aim of this study was to investigate the effects of orally administered FPP® in either the prevention or treatment of a murine model of melanoma. The tumor growth was analyzed together with the blood levels of both oxidants (ROS) and anti-oxidants (SOD-1 and GSH). The results showed that FPP® controlled tumor growth, reducing the tumor mass of about three to seven times vs. untreated mice. The most significant effect was obtained with sublingual administration of FPP® close to the inoculation of melanoma. At the time of the sacrifice none of mice treated with FPP® had metastases and the subcutaneous tumors were significantly smaller and amelanotic, compared to untreated mice. Moreover, the FPP® anti-tumor effect was consistent with the decrease of total ROS levels and the increase in the blood levels of GSH and SOD-1. This study shows that a potent anti-oxidant treatment through FPP® may contribute to both preventing and inhibiting tumors growth.

18.
Oncoimmunology ; 6(6): e1317420, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680750

RESUMEN

The alarmin IL-33 is an IL-1 family member that stimulates pleiotropic immune reactions depending on the target tissue and microenvironmental factors. In this study, we have investigated the role of IL-33/ST2 axis in antitumor response to melanoma. Injection of IL-33 in mice-bearing subcutaneous B16.F10 melanoma resulted in significant tumor growth delay. This effect was associated with intratumoral accumulation of CD8+ T cells and eosinophils, decrease of immunosuppressive myeloid cells, and a mixed Th1/Th2 cytokine expression pattern with local and systemic activation of CD8+ T and NK cells. Moreover, intranasal administration of IL-33 determined ST2-dependent eosinophil recruitment in the lung that prevented the onset of pulmonary metastasis after intravenous injection of melanoma cells. Accordingly, ST2-deficient mice developed pulmonary metastasis at higher extent than wild-type counterparts, associated with lower eosinophil frequencies in the lung. Of note, depletion of eosinophils by in vivo treatment with anti-Siglec-F antibody abolished the ability of IL-33 to both restrict primary tumor growth and metastasis formation. Finally, we show that IL-33 is able to activate eosinophils resulting in efficient killing of target melanoma cells, suggesting a direct antitumor activity of eosinophils following IL-33 treatment. Our results advocate for an eosinophil-mediated antitumoral function of IL-33 against melanoma, thus opening perspectives for novel cancer immunotherapy strategies.

19.
J Invest Dermatol ; 137(1): 159-169, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27623509

RESUMEN

Resistance to IFN-I-induced antineoplastic effects has been reported in many tumors and arises, in part, from epigenetic silencing of IFN-stimulated genes by DNA methylation. We hypothesized that restoration of IFN-stimulated genes by co-administration of the demethylating drug 5-aza-2'-deoxycitidine (decitabine [DAC]) may enhance the susceptibility to IFN-I-mediated antitumoral effects in melanoma. We show that combined administration of IFN-I and DAC significantly inhibits the growth of murine and human melanoma cells, both in vitro and in vivo. Compared with controls, DAC/IFN-I-treated melanoma cells exhibited reduced cell growth, augmented apoptosis, and diminished migration. Moreover, IFN-I and DAC synergized to suppress the growth of three-dimensional human melanoma spheroids, altering tumor architecture. These direct antitumor effects correlated with induction of the IFN-stimulated gene Mx1. In vivo, DAC/IFN-I significantly reduced melanoma growth via stimulation of adaptive immunity, promoting tumor-infiltrating CD8+ T cells while inhibiting the homing of immunosuppressive CD11b+ myeloid cells and regulatory T cells. Accordingly, exposure of human melanoma cells to DAC/IFN-I induced the recruitment of immune cells toward the tumor in a Matrigel (Corning Life Sciences, Kennebunkport, ME)-based microfluidic device. Our findings underscore a beneficial effect of DAC plus IFN-I combined treatment against melanoma through both direct and immune-mediated anti-tumor effects.


Asunto(s)
Apoptosis/efectos de los fármacos , Azacitidina/farmacología , Interferón Tipo I/farmacología , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Análisis de Varianza , Animales , Apoptosis/genética , Azacitidina/análogos & derivados , Línea Celular Tumoral/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Interferón Tipo I/genética , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias Cutáneas/patología , Estadísticas no Paramétricas
20.
Br J Pharmacol ; 174(2): 139-149, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27792834

RESUMEN

BACKGROUND AND PURPOSE: Propranolol is a vasoactive drug that shows antiangiogenic and antitumour activities in melanoma. However, it is unknown whether these activities are dose-dependent and whether there is a relationship between systemic vascular effects of propranolol and anti-melanoma activity. EXPERIMENTAL APPROACH: Effects of increasing doses of propranolol (10, 20, 30 and 40 mg·kg-1 ·day-1 ) on tumour growth were studied in B16F10 melanoma-bearing mice. Histological and biochemical analyses were used to assess propranolol effects on angiogenesis and cancer cell proliferation. Systemic vascular resistance (SVR) was evaluated by measuring cardiac output and arterial BP. KEY RESULTS: In vitro analyses revealed that B16F10 cells expressed ß-adrenoceptors, but neither isoprenaline, a ß-adrenoceptor agonist, nor the ß-blocker propranolol affected cancer cell proliferation. In vivo studies showed that the antitumour efficacy of propranolol follows a U-shaped biphasic dose-response curve. Low doses (10 and 20 mg·kg-1 ·day-1 ) significantly inhibit tumour growth, whereas higher doses are progressively less effective. We also found that high-dose propranolol stimulates tumour arteriogenesis whereas no effect on angiogenesis was observed at any dose. Based on these data and considering that propranolol is a vasoactive drug, we hypothesized that it causes systemic vasoconstriction or vasodilation depending on the dose and thus alters tumour perfusion and growth. Consistent with this hypothesis, we found that propranolol has a biphasic effect on SVR with low and high doses producing vasoconstriction and vasodilation respectively. CONCLUSIONS AND IMPLICATIONS: Propranolol inhibits melanoma growth in a U-shaped biphasic manner. A direct relationship exists between SVR and anti-melanoma activity.


Asunto(s)
Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Propranolol/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Masculino , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...