Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Med Chem ; 65(24): 16510-16525, 2022 12 22.
Article En | MEDLINE | ID: mdl-36459397

The relationship between drug-target residence time and the post-antibiotic effect (PAE) provides insights into target vulnerability. To probe the vulnerability of bacterial acetyl-CoA carboxylase (ACC), a series of heterobivalent inhibitors were synthesized based on pyridopyrimidine 1 and moiramide B (3) which bind to the biotin carboxylase and carboxyltransferase ACC active sites, respectively. The heterobivalent compound 17, which has a linker of 50 Å, was a tight binding inhibitor of Escherichia coli ACC (Kiapp 0.2 nM) and could be displaced from ACC by a combination of both 1 and 3 but not just by 1. In agreement with the prolonged occupancy of ACC resulting from forced proximity binding, the heterobivalent inhibitors produced a PAE in E. coli of 1-4 h in contrast to 1 and 3 in combination or alone, indicating that ACC is a vulnerable target and highlighting the utility of kinetic, time-dependent effects in the drug mechanism of action.


Acetyl-CoA Carboxylase , Escherichia coli , Escherichia coli/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Catalytic Domain
2.
J Am Chem Soc ; 139(9): 3417-3429, 2017 03 08.
Article En | MEDLINE | ID: mdl-28151657

A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA. This led to the discovery of a triazole-containing diphenyl ether with an increased residence time on InhA due to transition-state destabilization rather than ground-state stabilization. In the present work, we evaluate the inhibition of InhA by 14 triazole-based diphenyl ethers and use a combination of enzyme kinetics and X-ray crystallography to generate a structure-kinetic relationship for time-dependent binding. We show that the triazole motif slows the rate of formation for the final drug-target complex by up to 3 orders of magnitude. In addition, we identify a novel inhibitor with a residence time on InhA of 220 min, which is 3.5-fold longer than that of the INH-NAD adduct formed by the tuberculosis drug, isoniazid. This study provides a clear example in which the lifetime of the drug-target complex is controlled by interactions in the transition state for inhibitor binding rather than the ground state of the enzyme-inhibitor complex, and demonstrates the important role that on-rates can play in drug-target residence time.


Inhibins/antagonists & inhibitors , Thermodynamics , Triazoles/pharmacology , Crystallography, X-Ray , Humans , Inhibins/metabolism , Kinetics , Models, Molecular , Molecular Structure , Time Factors , Triazoles/chemistry
3.
Biochemistry ; 56(13): 1865-1878, 2017 04 04.
Article En | MEDLINE | ID: mdl-28225601

There is growing awareness of the link between drug-target residence time and in vivo drug activity, and there are increasing efforts to determine the molecular factors that control the lifetime of a drug-target complex. Rational alterations in the drug-target residence time require knowledge of both the ground and transition states on the inhibition reaction coordinate, and we have determined the structure-kinetic relationship for 22 ethyl- or hexyl-substituted diphenyl ethers that are slow-binding inhibitors of bpFabI1, the enoyl-ACP reductase FabI1 from Burkholderia pseudomallei. Analysis of enzyme inhibition using a two-dimensional kinetic map demonstrates that the ethyl and hexyl diphenyl ethers fall into two distinct clusters. Modifications to the ethyl diphenyl ether B ring result in changes to both on and off rates, where residence times of up to ∼700 min (∼11 h) are achieved by either ground state stabilization (PT444) or transition state destabilization (slower on rate) (PT404). By contrast, modifications to the hexyl diphenyl ether B ring result in residence times of 300 min (∼5 h) through changes in only ground state stabilization (PT119). Structural analysis of nine enzyme:inhibitor complexes reveals that the variation in structure-kinetic relationships can be rationalized by structural rearrangements of bpFabI1 and subtle changes to the orientation of the inhibitor in the binding pocket. Finally, we demonstrate that three compounds with residence times on bpFabI1 from 118 min (∼2 h) to 670 min (∼11 h) have in vivo efficacy in an acute B. pseudomallei murine infection model using the virulent B. pseudomallei strain Bp400.


Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Burkholderia pseudomallei/drug effects , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Melioidosis/diet therapy , Phenyl Ethers/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Burkholderia pseudomallei/enzymology , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/growth & development , Colony Count, Microbial , Crystallography, X-Ray , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enzyme Inhibitors/pharmacology , Female , Gene Expression , Kinetics , Lung/drug effects , Lung/microbiology , Melioidosis/drug therapy , Melioidosis/microbiology , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Phenyl Ethers/pharmacology , Protein Binding , Protein Structure, Secondary , Spleen/drug effects , Spleen/microbiology , Structure-Activity Relationship
4.
Biochemistry ; 54(10): 1943-55, 2015 Mar 17.
Article En | MEDLINE | ID: mdl-25706582

One third of all drugs in clinical use owe their pharmacological activity to the functional inhibition of enzymes, highlighting the importance of enzymatic targets for drug development. Because of the close relationship between inhibition and catalysis, understanding the recognition and turnover of enzymatic substrates is essential for rational drug design. Although the Staphylococcus aureus enoyl-acyl carrier protein reductase (saFabI) involved in bacterial fatty acid biosynthesis constitutes a very promising target for the development of novel, urgently needed anti-staphylococcal agents, the substrate binding mode and catalytic mechanism remained unclear for this enzyme. Using a combined crystallographic, kinetic, and computational approach, we have explored the chemical properties of the saFabI binding cavity, obtaining a consistent mechanistic model for substrate binding and turnover. We identified a water-molecule network linking the active site with a water basin inside the homo-tetrameric protein, which seems to be crucial for the closure of the flexible substrate binding loop as well as for an effective hydride and proton transfer during catalysis. On the basis of our results, we also derive a new model for the FabI-ACP complex that reveals how the ACP-bound acyl-substrate is injected into the FabI binding crevice. These findings support the future development of novel FabI inhibitors that target the FabI-ACP interface leading to the disruption of the interaction between these two proteins.


Bacterial Proteins/chemistry , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Models, Molecular , Staphylococcus aureus/enzymology , Water/chemistry , Catalysis , Catalytic Domain , Structure-Activity Relationship
5.
Anal Biochem ; 474: 40-9, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25684450

The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-acyl carrier protein (enoyl-ACP) reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-(32)P]NAD(P(+)) cofactor. In total, 23 FabI inhibitors were analyzed, and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percentage drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady-state kinetic methods for compounds with tR values of 10 to 100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 to 37 °C.


Biochemistry/methods , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , NAD/metabolism , Acyl Carrier Protein , Computer Simulation , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Feasibility Studies , High-Throughput Screening Assays , Kinetics , Phosphorus Radioisotopes , Reproducibility of Results , Temperature , Time Factors
6.
Org Lett ; 14(13): 3292-5, 2012 Jul 06.
Article En | MEDLINE | ID: mdl-22702475

Tuning properties by programming the surface functional group composition of surface-block dendrimers has been limited to dendrimers with only two types of surface functionality (i.e., surface-diblock dendrimers). The Passerini reaction provides dendrimer products from precursor dendrons in reasonable yields. This proof-of-principle experiment opens the door to making surface-triblock dendrimers.

...