Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nucleic Acids Res ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041433

RESUMEN

Increasingly many studies reveal how ribosome composition can be tuned to optimally translate the transcriptome of individual cell types. In this study, we investigated the expression pattern, structure within the ribosome and effect on protein synthesis of the ribosomal protein paralog 39L (RPL39L). With a novel mass spectrometric approach we revealed the expression of RPL39L protein beyond mouse germ cells, in human pluripotent cells, cancer cell lines and tissue samples. We generated RPL39L knock-out mouse embryonic stem cell (mESC) lines and demonstrated that RPL39L impacts the dynamics of translation, to support the pluripotency and differentiation, spontaneous and along the germ cell lineage. Most differences in protein abundance between WT and RPL39L KO lines were explained by widespread autophagy. By CryoEM analysis of purified RPL39 and RPL39L-containing ribosomes we found that, unlike RPL39, RPL39L has two distinct conformations in the exposed segment of the nascent peptide exit tunnel, creating a distinct hydrophobic patch that has been predicted to support the efficient co-translational folding of alpha helices. Our study shows that ribosomal protein paralogs provide switchable modular components that can tune translation to the protein production needs of individual cell types.

3.
EMBO Rep ; 25(4): 2071-2096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565738

RESUMEN

Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.


Asunto(s)
Mitocondrias , Proteínas de Saccharomyces cerevisiae , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transporte de Proteínas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
FEBS Open Bio ; 14(3): 390-409, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320757

RESUMEN

Post-translational modifications are key in the regulation of activity, structure, localization, and stability of most proteins in eukaryotes. Phosphorylation is potentially the most studied post-translational modification, also due to its reversibility and thereby the regulatory role this modification often plays. While most research attention was focused on kinases in the past, phosphatases remain understudied, most probably because the addition and presence of the modification is more easily studied than its removal and absence. Here, we report the identification of an uncharacterized protein tyrosine phosphatase PPH-7 in C. elegans, a member of the evolutionary conserved PTPN family of phosphatases. Lack of PPH-7 function led to reduction of fertility and embryonic lethality at elevated temperatures. Proteomics revealed changes in the regulation of targets of the von Hippel-Lindau (VHL) E3 ligase, suggesting a potential role for PPH-7 in the regulation of VHL.


Asunto(s)
Caenorhabditis elegans , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Animales , Caenorhabditis elegans/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Temperatura , Proteínas Tirosina Fosfatasas , Desarrollo Embrionario/genética , Fertilidad/genética
5.
FEBS Lett ; 598(10): 1235-1251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38268392

RESUMEN

Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.


Asunto(s)
Gotas Lipídicas , Mitocondrias , Saccharomyces cerevisiae , Mitocondrias/metabolismo , Gotas Lipídicas/metabolismo , Animales , Humanos , Saccharomyces cerevisiae/metabolismo , Ácidos Grasos/metabolismo , Peroxisomas/metabolismo , Metabolismo de los Lípidos
6.
Nat Cell Biol ; 25(8): 1157-1172, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400497

RESUMEN

Lipid mobilization through fatty acid ß-oxidation is a central process essential for energy production during nutrient shortage. In yeast, this catabolic process starts in the peroxisome from where ß-oxidation products enter mitochondria and fuel the tricarboxylic acid cycle. Little is known about the physical and metabolic cooperation between these organelles. Here we found that expression of fatty acid transporters and of the rate-limiting enzyme involved in ß-oxidation is decreased in cells expressing a hyperactive mutant of the small GTPase Arf1, leading to an accumulation of fatty acids in lipid droplets. Consequently, mitochondria became fragmented and ATP synthesis decreased. Genetic and pharmacological depletion of fatty acids phenocopied the arf1 mutant mitochondrial phenotype. Although ß-oxidation occurs in both mitochondria and peroxisomes in mammals, Arf1's role in fatty acid metabolism is conserved. Together, our results indicate that Arf1 integrates metabolism into energy production by regulating fatty acid storage and utilization, and presumably organelle contact sites.


Asunto(s)
Mitocondrias , Peroxisomas , Animales , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Metabolismo de los Lípidos/genética , Homeostasis , Mamíferos/metabolismo
7.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36876970

RESUMEN

Cargo delivery from one compartment to the next relies on the fusion of vesicles with different cellular organelles in a process that requires the concerted action of tethering factors. Although all tethers act to bridge vesicle membranes to mediate fusion, they form very diverse groups as they differ in composition, and in their overall architecture and size, as well as their protein interactome. However, their conserved function relies on a common design. Recent data on class C Vps complexes indicates that tethers play a significant role in membrane fusion beyond vesicle capturing. Furthermore, these studies provide additional mechanistic insights into membrane fusion events and reveal that tethers should be considered as key players of the fusion machinery. Moreover, the discovery of the novel tether FERARI complex has changed our understanding of cargo transport in the endosomal system as it has been shown to mediate 'kiss-and-run' vesicle-target membrane interactions. In this Cell Science at a Glance and the accompanying poster, we compare the structure of the coiled-coil and the multisubunit CATCHR and class C Vps tether families on the basis of their functional analogy. We discuss the mechanism of membrane fusion, and summarize how tethers capture vesicles, mediate membrane fusion at different cellular compartments and regulate cargo traffic.


Asunto(s)
Endosomas , Fusión de Membrana , Humanos , Membranas , Dominios Proteicos , Grupo Social
8.
Front Cell Dev Biol ; 11: 1140605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895788

RESUMEN

Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.

9.
Bioessays ; 44(12): e2200158, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344475

RESUMEN

Intercellular communication is an essential process in all multicellular organisms. During this process, molecules secreted by one cell will bind to a receptor on the cognate cell leading to the subsequent uptake of the receptor-ligand complex. Once inside, the cell then determines the fate of the receptor-ligand complex and any other proteins that were endocytosed together. Approximately 80% of endocytosed material is recycled back to the plasma membrane either directly or indirectly via the Golgi apparatus and the remaining 20% is delivered to the lysosome for degradation. Although most pathways have been identified, we still lack understanding on how specificity in sorting of recycling cargos into different pathways is achieved, and how the cell reaches high accuracy of these processes in the absence of clear sorting signals in the bulk of the client proteins. In this review, we will summarize our current understanding of the mechanism behind recycling cargo sorting and propose a model of differential affinities between cargo and cargo receptors/adaptors with regards to iterative sorting in endosomes.


Asunto(s)
Endocitosis , Endosomas , Humanos , Ligandos , Endosomas/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Comunicación Celular
10.
Nat Commun ; 13(1): 4620, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941155

RESUMEN

Cellular organization, compartmentalization and cell-to-cell communication are crucially dependent on endosomal pathways. Sorting endosomes provide a transit point for various trafficking pathways and decide the fate of proteins: recycling, secretion or degradation. FERARI (Factors for Endosome Recycling and Rab Interactions) play a key role in shaping these compartments and coordinate Rab GTPase function with membrane fusion and fission of vesicles through a kiss-and-run mechanism. Here, we show that FERARI also mediate kiss-and-run of Rab5-positive vesicles with sorting endosomes. During these encounters, cargo flows from Rab5-positive vesicles into sorting endosomes and from there in Rab11-positive vesicles. Cargo flow from sorting endosomes into Rab11 structures relies on the cargo adaptor SNX6, while cargo retention in the Rab11 compartment is dependent on AP1. The available cargo amount appears to regulate the duration of kisses. We propose that FERARI, together with cargo adaptors, coordinate the vectorial flow of cargo through sorting endosomes.


Asunto(s)
Endosomas , Proteínas de Unión al GTP rab , Comunicación Celular , Endosomas/metabolismo , Fusión de Membrana , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo
11.
Elife ; 102021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34846303

RESUMEN

Cell-cell communication is an essential process in life, with endosomes acting as key organelles for regulating uptake and secretion of signaling molecules. Endocytosed material is accepted by the sorting endosome where it either is sorted for recycling or remains in the endosome as it matures to be degraded in the lysosome. Investigation of the endosome maturation process has been hampered by the small size and rapid movement of endosomes in most cellular systems. Here, we report an easy versatile live-cell imaging assay to monitor endosome maturation kinetics, which can be applied to a variety of mammalian cell types. Acute ionophore treatment led to enlarged early endosomal compartments that matured into late endosomes and fused with lysosomes to form endolysosomes. Rab5-to-Rab7 conversion and PI(3)P formation and turn over were recapitulated with this assay and could be observed with a standard widefield microscope. We used this approach to show that Snx1 and Rab11-positive recycling endosome recruitment occurred throughout endosome maturation and was uncoupled from Rab conversion. In contrast, efficient endosomal acidification was dependent on Rab conversion. The assay provides a powerful tool to further unravel various aspects of endosome maturation.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Microscopía Fluorescente/métodos , Células HeLa , Humanos , Microscopía Fluorescente/instrumentación
12.
Genetics ; 219(3)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740248

RESUMEN

The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.


Asunto(s)
Matriz Extracelular , Proteínas de la Membrana , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sistemas CRISPR-Cas/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Muda/genética , Mucinas/metabolismo , Mutación , Dominios Proteicos/genética
14.
J Cell Sci ; 134(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34435633

RESUMEN

mRNA decay is a key step in regulating the cellular proteome. Processing bodies (P-bodies) are thought to be sites of mRNA decay and/or storage. P-body units assemble into P-body granules under stress conditions. How this assembly is regulated, however, remains poorly understood. Here, we show, in the yeast Saccharomyces cerevisiae, that the translational repressor Scd6 and the decapping stimulator Edc3 act partially redundantly in P-body assembly by sequestering the Dcp1-Dcp2 (denoted Dcp1/2) decapping complex in the cytoplasm and preventing it from becoming imported into the nucleus by the karyopherin ß protein Kap95. One of two nuclear localization signals in Dcp2 overlaps with the RNA-binding site, suggesting an additional mechanism to regulate Dcp1/2 localization. Nuclear Dcp1/2 does not drive mRNA decay and might be stored there as a readily releasable pool, indicating a dynamic equilibrium between cytoplasmic and nuclear Dcp1/2. Cytoplasmic Dcp1/2 is linked to Dhh1 via Edc3. Functional P-bodies are present at the endoplasmic reticulum where Dcp2 potentially acts to increase the local concentration of Dhh1 through interaction with Edc3 to drive phase separation and hence P-body formation.


Asunto(s)
Endorribonucleasas , Proteínas de Saccharomyces cerevisiae , ARN Helicasas DEAD-box , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estabilidad del ARN/genética , Ribonucleoproteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Nat Commun ; 12(1): 4898, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385431

RESUMEN

Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Colesterol/metabolismo , Homeostasis/genética , Metabolismo de los Lípidos/genética , Receptor Patched-1/genética , Animales , Western Blotting , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Microscopía Electrónica de Transmisión , Receptor Patched-1/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350963

RESUMEN

Gene expression involves regulation of chromatin structure and transcription, as well as processing of the transcribed mRNA. While there are feedback mechanisms, it is not clear whether these include crosstalk between chromatin architecture and mRNA decay. To address this, we performed a genome-wide genetic screen using a Saccharomyces cerevisiae strain harbouring the H3K56A mutation, which is known to perturb chromatin structure and nascent transcription. We identified Puf5 (also known as Mpt5) as essential in an H3K56A background. Depletion of Puf5 in this background leads to downregulation of Puf5 targets. We suggest that Puf5 plays a role in post-transcriptional buffering of mRNAs, and support this by transcriptional shutoff experiments in which Puf5 mRNA targets are degraded slower in H3K56A cells compared to wild-type cells. Finally, we show that post-transcriptional buffering of Puf5 targets is widespread and does not occur only in an H3K56A mutant, but also in an H3K4R background, which leads to a global increase in nascent transcription. Our data suggest that Puf5 determines the fate of its mRNA targets in a context-dependent manner acting as an mRNA surveillance hub balancing deregulated nascent transcription to maintain physiological mRNA levels.


Asunto(s)
Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
18.
Commun Biol ; 4(1): 720, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117357

RESUMEN

Cholesterol is an essential component of cellular membranes regulating the structural integrity and fluidity of biological bilayers and cellular processes such as signal transduction and membrane trafficking. However, tools to investigate the role and dynamics of cholesterol in live cells are still scarce and often show limited applicability. To address this, we previously developed a class of imidazolium-based cholesterol analogs, CHIMs. Here we confirm that CHIM membrane integration characteristics largely mimic those of cholesterol. Computational studies in simulated phospholipid bilayers and biophysical analyses of model membranes reveal that in biologically relevant systems CHIMs behave similarly to natural cholesterol. Importantly, the analogs can functionally replace cholesterol in membranes, can be readily labeled by click chemistry and follow trafficking pathways of cholesterol in live cells. Thus, CHIMs represent chemically versatile cholesterol analogs that can serve as a flexible toolbox to study cholesterol behavior and function in live cells and organisms.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Imidazoles/metabolismo , Membrana Dobles de Lípidos/metabolismo , Imitación Molecular , Células HeLa/metabolismo , Humanos , Microscopía Fluorescente , Fosfolípidos/metabolismo
19.
Microb Cell ; 8(5): 87-90, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33981760

RESUMEN

Eukaryotic cells are complicated factories that need ensure productivity and functionality on the cellular level as well as being able to communicate with their environment. In order to do so cells developed intracellular communication systems. For a long time, research focused mainly on the secretory/biosynthetic and endocytic routes for communication, leaving the communication with other organelles apart. In the last decade, this view has changed dramatically and a more holistic view of intracellular communication is emerging. We are still at the tip of the iceberg, but a common theme of touching, kissing, fusing is emerging as general principles of communication.

20.
PLoS Genet ; 17(4): e1009457, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33872306

RESUMEN

Spatiotemporal restriction of signaling plays a critical role in animal development and tissue homeostasis. All stem and progenitor cells in newly hatched C. elegans larvae are quiescent and capable of suspending their development until sufficient food is supplied. Here, we show that ptr-18, which encodes the evolutionarily conserved patched-related (PTR)/patched domain-containing (PTCHD) protein, temporally restricts the availability of extracellular hedgehog-related protein to establish the capacity of progenitor cells to maintain quiescence. We found that neural progenitor cells exit from quiescence in ptr-18 mutant larvae even when hatched under starved conditions. This unwanted reactivation depended on the activity of a specific set of hedgehog-related grl genes including grl-7. Unexpectedly, neither PTR-18 nor GRL-7 were expressed in newly hatched wild-type larvae. Instead, at the late embryonic stage, both PTR-18 and GRL-7 proteins were first localized around the apical membrane of hypodermal and neural progenitor cells and subsequently targeted for lysosomal degradation before hatching. Loss of ptr-18 caused a significant delay in GRL-7 clearance, causing this protein to be retained in the extracellular space in newly hatched ptr-18 mutant larvae. Furthermore, the putative transporter activity of PTR-18 was shown to be required for the appropriate function of the protein. These findings not only uncover a previously undescribed role of PTR/PTCHD in the clearance of extracellular hedgehog-related proteins via endocytosis-mediated degradation but also illustrate that failure to temporally restrict intercellular signaling during embryogenesis can subsequently compromise post-embryonic progenitor cell function.


Asunto(s)
Caenorhabditis elegans/genética , Endocitosis/genética , Proteínas Hedgehog/genética , Receptores Patched/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/genética , Larva/genética , Larva/crecimiento & desarrollo , Mutación/genética , Células-Madre Neurales/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA