Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Oral Investig ; 27(5): 2163-2173, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36790628

RESUMEN

OBJECTIVES: To investigate the effect of layer height of FFF-printed models on aligner force transmission to a second maxillary premolar during buccal torquing, distalization, extrusion, and rotation using differing foil thicknesses. MATERIALS AND METHODS: Utilizing OnyxCeph3™ Lab (Image Instruments GmbH, Chemnitz, Germany, Release Version 3.2.185), the following movements were programmed for the second premolar: buccal torque (0.1-0.5 mm), distalization (0.1-0.4 mm), extrusion (0.1-0.4 mm), rotation (0.1-0.5 mm), and staging 0.1 mm. Via FFF, 91 maxillary models were printed for each staging at different layer heights (100 µm, 150 µm, 200 µm, 250 µm, 300 µm). Hence, 182 aligners, made of polyethylene terephthalate glycol (PET-G) with two thicknesses (0.5 mm and 0.75 mm), were prepared. The test setup comprised an acrylic maxillary model with the second premolar separated and mounted on a sensor, measuring initial forces and moments exerted by the aligners. A generalized linear model for the gamma distribution was applied, evaluating the significance of the factors layer height, type of movement, aligner thickness, and staging on aligner force transmission. RESULTS: Foil thickness and staging were found to have a significant influence on forces delivered by aligners, whereas no significance was determined for layer height and type of movement. Nevertheless, at a layer height of 150 µm, the most appropriate force transmission was observed. CONCLUSIONS: Printing aligner models at particularly low layer heights leads to uneconomically high print time without perceptible better force delivery properties, whereas higher layer heights provoke higher unpredictability of forces due to scattering. A z-resolution of 150 µm appears ideal for in-office aligner production combining advantages of economic print time and optimal force transmission.


Asunto(s)
Diseño de Aparato Ortodóncico , Técnicas de Movimiento Dental , Rotación , Maxilar , Torque
2.
Life Sci ; 311(Pt A): 121143, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36328074

RESUMEN

AIMS: P2X receptors are ATP-gated ion channels which play a role in many pathophysiological conditions. They are considered as novel drug targets, particularly in the fields of pain, (neuro) inflammation, and cancer. Due to difficulties in developing drug-like orthosteric ligands that bind to the highly polar ATP binding site, the design of positive and negative allosteric modulators (PAMs and NAMs) is a promising strategy. The P2X4 receptor was proposed as a novel target for neuropathic and inflammatory pain (antagonists), and for the treatment of alcoholism (PAMs). So far, little is known about the allosteric binding site(s) of P2X4 receptors. The aim of this study was to identify the binding site(s) of the macrocyclic natural product ivermectin, the urea derivative BX430, and the antidepressant drug paroxetine that act as allosteric modulators of P2X4 receptors. MATERIAL AND METHODS: We generated chimeric receptors in which extracellular sequences of the human P2X4 receptor were exchanged for corresponding residues of the human P2X2 receptor, complemented by specific single amino acid residue mutants. Chimeric and mutated receptors were stably expressed in 1321N1 astrocytoma cells, and characterized by fluorimetric measurement of ATP-induced Ca2+-influx. In addition, docking studies utilizing a homology model of the human P2X4 receptor were performed. KEY FINDINGS: Our results suggest a common binding site for ivermectin and BX430 in an extracellular receptor domain, while paroxetine might bind to the cation pore. SIGNIFICANCE: The obtained results provide a basis for the development of positive and negative allosteric P2X4 modulators with improved properties and will support future drug development efforts.


Asunto(s)
Paroxetina , Receptores Purinérgicos P2X4 , Humanos , Receptores Purinérgicos P2X4/metabolismo , Ivermectina , Sitios de Unión , Dolor , Adenosina Trifosfato/metabolismo
3.
EMBO Mol Med ; 13(1): e12724, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33332729

RESUMEN

Enteric glial cells (EGC) modulate motility, maintain gut homeostasis, and contribute to neuroinflammation in intestinal diseases and motility disorders. Damage induces a reactive glial phenotype known as "gliosis", but the molecular identity of the inducing mechanism and triggers of "enteric gliosis" are poorly understood. We tested the hypothesis that surgical trauma during intestinal surgery triggers ATP release that drives enteric gliosis and inflammation leading to impaired motility in postoperative ileus (POI). ATP activation of a p38-dependent MAPK pathway triggers cytokine release and a gliosis phenotype in murine (and human) EGCs. Receptor antagonism and genetic depletion studies revealed P2X2 as the relevant ATP receptor and pharmacological screenings identified ambroxol as a novel P2X2 antagonist. Ambroxol prevented ATP-induced enteric gliosis, inflammation, and protected against dysmotility, while abrogating enteric gliosis in human intestine exposed to surgical trauma. We identified a novel pathogenic P2X2-dependent pathway of ATP-induced enteric gliosis, inflammation and dysmotility in humans and mice. Interventions that block enteric glial P2X2 receptors during trauma may represent a novel therapy in treating POI and immune-driven intestinal motility disorders.


Asunto(s)
Gliosis , Neuroglía , Antagonistas del Receptor Purinérgico P2X/farmacología , Animales , Citocinas , Inflamación , Intestino Delgado/fisiopatología , Ratones
4.
J Med Chem ; 63(11): 6164-6178, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32345019

RESUMEN

Antagonists for the ATP-gated ion channel receptor P2X1 have potential as antithrombotics and for treating hyperactive bladder and inflammation. In this study, salicylanilide derivatives were synthesized based on a screening hit. P2X1 antagonistic potency was assessed in 1321N1 astrocytoma cells stably transfected with the human P2X1 receptor by measuring inhibition of the ATP-induced calcium influx. Structure-activity relationships were analyzed, and selectivity versus other P2X receptor subtypes was assessed. The most potent compounds, N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (1, IC50 0.0192 µM) and N-[3,5-bis(trifluoromethyl)phenyl]-4-chloro-2-hydroxybenzamide (14, IC50 0.0231 µM), displayed >500-fold selectivity versus P2X2 and P2X3, and 10-fold selectivity versus P2X4 and P2X7 receptors, and inhibited collagen-induced platelet aggregation. They behaved as negative allosteric modulators, and molecular modeling studies suggested an extracellular binding site. Besides selective P2X1 antagonists, compounds with ancillary P2X4 and/or P2X7 receptor inhibition were discovered. These compounds represent the first potent, non-acidic, allosteric P2X1 receptor antagonists reported to date.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X1/metabolismo , Salicilanilidas/química , Regulación Alostérica/efectos de los fármacos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Sitios de Unión , Plaquetas/citología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Calcio/metabolismo , Línea Celular , Colágeno , Evaluación Preclínica de Medicamentos , Humanos , Simulación de Dinámica Molecular , Agregación Plaquetaria/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Antagonistas del Receptor Purinérgico P2X/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X1/química , Salicilanilidas/metabolismo , Salicilanilidas/farmacología , Relación Estructura-Actividad
5.
AAPS J ; 20(1): 9, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192345

RESUMEN

Combining the multikinase inhibitor sorafenib with the platinum-based chemotherapy of solid tumors was expected to improve treatment outcome. However, in many clinical trials, no benefit from sorafenib addition to the platinum-containing regimen could be demonstrated. Moreover, in some studies, decreased survival of ovarian cancer patients as well as non-small cell lung cancer patients with squamous cell histology was observed. The aim of this study was to investigate the cellular mechanisms of the pharmacological interaction between platinum drugs and sorafenib in different cancer cell lines. The interaction was characterized by combination index analysis, platinum accumulation and DNA platination were determined using flameless atomic absorption spectrometry, and protein expression was assessed with Western blot. In the sensitive A2780 ovarian carcinoma and H520 squamous cell lung carcinoma cell lines, sorafenib induced downregulation of Na+,K+-ATPase. In A2780 cells, the kinase inhibitor also decreased the expression of copper transporter 1 (CTR1). As a result, sorafenib treatment led to a diminished cellular accumulation of cisplatin and carboplatin and to a decrease in DNA platination in these cell lines. This was not the case in the cisplatin-resistant A2780cis ovarian carcinoma and H522 lung adenocarcinoma cell lines featuring lower basal expression of the above-mentioned transporters. In all cell lines studied, an antagonistic interaction between platinum drugs and sorafenib was found. Our results suggest that sorafenib impairs cisplatin and carboplatin uptake through downregulation of CTR1 and/or Na+,K+-ATPase resulting in reduction of DNA platination. This effect is not observed in cancer cells with defects in platinum accumulation.


Asunto(s)
Antineoplásicos/farmacología , Carboplatino/farmacocinética , Proteínas de Transporte de Catión/fisiología , Cisplatino/farmacocinética , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Adenosina Trifosfato/metabolismo , Proteínas de Transporte de Catión/antagonistas & inhibidores , Línea Celular Tumoral , Transportador de Cobre 1 , ADN/metabolismo , Interacciones Farmacológicas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Niacinamida/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Sorafenib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA