Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 34(4): 775-783, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36960982

RESUMEN

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a method to probe the solvent accessibility and conformational dynamics of a protein or a protein-ligand complex with respect to exchangeable amide hydrogens. Here, we present the application of HDX-MS to determine the binding sites of Affimer reagents to the monoclonal antibodies trastuzumab and pertuzumab, respectively. Intact and subunit level HDX-MS analysis of antibody-affimer complexes showed significant protection from HDX in the antibody Fab region upon affimer binding. Bottom-up HDX-MS experiments including online pepsin digestion revealed that the binding sites of the affimer reagents were mainly located in the complementarity-determining region (CDR) 2 of the heavy chain of the respective antibodies. Three-dimensional models of the binding interaction between the affimer reagents and the antibodies were built by homology modeling and molecular docking based on the HDX data.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Trastuzumab , Deuterio , Medición de Intercambio de Deuterio/métodos , Simulación del Acoplamiento Molecular , Espectrometría de Masas/métodos , Sitios de Unión , Hidrógeno/química
2.
Anal Chem ; 95(8): 3951-3958, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36795375

RESUMEN

Pertuzumab is a monoclonal antibody used for the treatment of HER2-positive breast cancer in combination with trastuzumab. Charge variants of trastuzumab have been extensively described in the literature; however, little is known about the charge heterogeneity of pertuzumab. Here, changes in the ion-exchange profile of pertuzumab were evaluated by pH gradient cation-exchange chromatography after stressing it for up to 3 weeks at physiological and elevated pH and 37 °C. Isolated charge variants arising under stress conditions were characterized by peptide mapping. The results of peptide mapping showed that deamidation in the Fc domain and N-terminal pyroglutamate formation in the heavy chain are the main contributors to charge heterogeneity. The heavy chain CDR2, which is the only CDR containing asparagine residues, was quite resistant to deamidation under stress conditions according to peptide mapping results. Using surface plasmon resonance, it was shown that the affinity of pertuzumab for the HER2 target receptor does not change under stress conditions. Peptide mapping analysis of clinical samples showed an average of 2-3% deamidation in the heavy chain CDR2, 20-25% deamidation in the Fc domain, and 10-15% N-terminal pyroglutamate formation in the heavy chain. These findings suggest that in vitro stress studies are able to predict in vivo modifications.


Asunto(s)
Neoplasias de la Mama , Regiones Determinantes de Complementariedad , Humanos , Femenino , Ácido Pirrolidona Carboxílico , Anticuerpos Monoclonales Humanizados , Trastuzumab , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-2
3.
Anal Bioanal Chem ; 415(8): 1505-1513, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693954

RESUMEN

Trastuzumab is known to be heterogeneous in terms of charge. Stressing trastuzumab under physiological conditions (pH 7.4 and 37 °C) increases charge heterogeneity further. Separation of charge variants of stressed trastuzumab at the intact protein level is challenging due to increasing complexity making it difficult to obtain pure charge variants for further characterization. Here we report an approach for revealing charge heterogeneity of stressed trastuzumab at the subunit level by pH gradient cation-exchange chromatography. Trastuzumab subunits were generated after limited proteolytic cleavage with papain, IdeS, and GingisKHAN®. The basic pI of Fab and F(ab)2 fragments allowed to use the same pH gradient for intact protein and subunit level analysis. Baseline separation of Fab subunits was obtained after GingisKHAN® and papain digestion and the corresponding modifications were determined by LC-MS/MS peptide mapping and middle-down MALDI-ISD FT-ICR MS. The described approach allows a comprehensive charge variant analysis of therapeutic antibodies that have two or more modification sites in the Fab region.


Asunto(s)
Anticuerpos Monoclonales , Papaína , Trastuzumab , Anticuerpos Monoclonales/química , Cromatografía Liquida , Espectrometría de Masas en Tándem
4.
Drug Metab Dispos ; 51(2): 249-256, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379709

RESUMEN

Therapeutic proteins (TPs) are known to be heterogeneous due to modifications that occur during the production process and storage. Modifications may also occur in TPs after their administration to patients due to in vivo biotransformation. Ligand binding assays, which are widely used in the bioanalysis of TPs in body fluids, are typically unable to distinguish such modifications. Liquid chromatography coupled to mass spectrometry is being increasingly used to study modifications in TPs, but its use to study in vivo biotransformation has been limited until now. We present a novel approach that combines affinity enrichment using Affimer reagents with ion-exchange chromatography (IEX) to analyze charge variants of the TPs trastuzumab and pertuzumab in plasma of patients undergoing therapy for HER2-positive breast cancer. Affimer reagents were immobilized via engineered Cys tags to maleimide beads, and the TPs were eluted under acidic conditions followed by rapid neutralization. The enriched TPs were analyzed by cation-exchange chromatography (IEX) using pH-gradient elution, resulting in the separation of about 20 charge variants for trastuzumab and about five charge variants for pertuzumab. A comparison between in vitro stressed TPs spiked into plasma, and TPs enriched from patient plasma showed that the observed profiles were highly similar. This indicates that in vitro stress testing in plasma can mimic the situation in patient plasma, as far as the generation of charge variants is concerned. SIGNIFICANCE STATEMENT: This research attempts to elucidate the modifications that occur in therapeutic proteins (TPs) after they have been administered to patients. This is important because there is little knowledge about the fate of TPs in this regard, and certain modifications could affect their efficiency. Our results show that the modifications discovered are most likely due to a chemical process and are not patient specific.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Trastuzumab/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Anticuerpos Monoclonales Humanizados/uso terapéutico , Cromatografía por Intercambio Iónico , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica
6.
J Chromatogr A ; 1655: 462506, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492576

RESUMEN

Cation-exchange chromatography is a widely used approach to study charge heterogeneity of monoclonal antibodies. Heterogeneity may arise both in vitro and in vivo because of the susceptibility of monoclonal antibodies to undergo chemical modifications. Modifications may adversely affect the potency of the drug, induce immunogenicity or affect pharmacokinetics. In this study, we evaluated the application of optimized pH gradient systems for the separation of charge variants of trastuzumab after forced degradation study. pH gradient-based elution resulted in high-resolution separation of some 20 charge variants after 3 weeks at 37°C under physiological conditions. The charge variants were further characterized by LC-MS-based peptide mapping. There was no significant difference in the binding properties to HER2 or a range of Fcγ receptors between non-stressed and stressed trastuzumab.


Asunto(s)
Anticuerpos Monoclonales , Cromatografía por Intercambio Iónico , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Trastuzumab
7.
Anal Chem ; 93(40): 13597-13605, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582688

RESUMEN

Trastuzumab and pertuzumab are monoclonal antibodies used in the treatment of human epidermal growth factor receptor-2 (HER2)-positive breast cancer. Therapeutic proteins may undergo chemical modifications that may affect the results of bioanalytical assays, as well as their therapeutic efficacy. Modifications may arise during production and storage, as well as after administration to patients. Studying in vivo biotransformation of monoclonal, therapeutic antibodies requires their enrichment from plasma to discriminate them from endogenous antibodies, as well as from other plasma proteins. To this end, we screened Affimer reagents for selectivity toward trastuzumab or pertuzumab. Affimer reagents are alternative binding proteins possessing two variable binding loops that are based on the human protease inhibitor stefin A or phytocystatin protein scaffolds. Affimer reagents were selected from an extensive library by phage display. The four best-performing binders for each therapeutic antibody were prioritized using a microtiter plate-based approach combined with liquid chromatography-mass spectrometry (LC-MS) in the selected reaction monitoring (SRM) mode. These Affimer reagents were immobilized via engineered 6-His or Cys tags to Ni2+- or maleimide beads, respectively. Recovery values of 70% and higher were obtained for both trastuzumab and pertuzumab when spiked at 100, 150, and 200 µg/mL concentrations in human plasma followed by trypsin digestion in the presence of 0.5% sodium deoxycholate and 10 mM dithiothreitol (DTT). Notably, the maleimide beads showed undetectable unspecific binding to endogenous immunoglobulin G (IgGs) or other plasma proteins when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enrichment method was applied to samples from stress tests of the antibodies at 37 °C to mimic in vivo conditions.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama/tratamiento farmacológico , Cromatografía Liquida , Femenino , Humanos , Indicadores y Reactivos , Espectrometría de Masas , Receptor ErbB-2 , Trastuzumab
8.
Front Chem ; 9: 794247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047480

RESUMEN

Asparagine deamidation and aspartic acid isomerization in the complementarity determining regions (CDRs) of monoclonal antibodies may alter their affinity to the target antigen. Trastuzumab has two hot spots for deamidation and one position for isomerization in the CDRs. Little is known how complex formation with its target antigen HER2 affects these modifications. Modifications in the CDRs of trastuzumab were thus compared between the free antibody and the trastuzumab-HER2 complex when stressed under physiological conditions at 37°C. Complex formation and stability of the complex upon stressing were assessed by size-exclusion chromatography. Deamidation of light-chain Asn-30 (Lc-Asn-30) was extensive when trastuzumab was stressed free but reduced about 10-fold when the antibody was stressed in complex with HER2. Almost no deamidation of heavy-chain (Hc-Asn-55) was detected in the trastuzumab-HER2 complex, while deamidation was observed when the antibody was stressed alone. Hc-Asp-102 isomerization, a modification that critically affects biological activity, was observed to a moderate degree when the free antibody was stressed but was not detected at all in the trastuzumab-HER2 complex. This shows that complex formation has a major influence on critical modifications in the CDRs of trastuzumab.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA