Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Biol Trace Elem Res ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38709369

Neuromuscular excitability is a vital body function, and Mg2+ is an essential regulatory cation for the function of excitable membranes. Loss of Mg2+ homeostasis disturbs fluxes of other cations across cell membranes, leading to pathophysiological electrogenesis, which can eventually cause vital threat to the patient. Chronic subclinical Mg2+ deficiency is an increasingly prevalent condition in the general population. It is associated with an elevated risk of cardiovascular, respiratory and neurological conditions and an increased mortality. Magnesium favours bronchodilation (by antagonizing Ca2+ channels on airway smooth muscle and inhibiting the release of endogenous bronchoconstrictors). Magnesium exerts antihypertensive effects by reducing peripheral vascular resistance (increasing endothelial NO and PgI2 release and inhibiting Ca2+ influx into vascular smooth muscle). Magnesium deficiency disturbs heart impulse generation and propagation by prolonging cell depolarization (due to Na+/K+ pump and Kir channel dysfunction) and dysregulating cardiac gap junctions, causing arrhythmias, while prolonged diastolic Ca2+ release (through leaky RyRs) disturbs cardiac excitation-contraction coupling, compromising diastolic relaxation and systolic contraction. In the brain, Mg2+ regulates the function of ion channels and neurotransmitters (blocks voltage-gated Ca2+ channel-mediated transmitter release, antagonizes NMDARs, activates GABAARs, suppresses nAChR ion current and modulates gap junction channels) and blocks ACh release at neuromuscular junctions. Magnesium exerts multiple therapeutic neuroactive effects (antiepileptic, antimigraine, analgesic, neuroprotective, antidepressant, anxiolytic, etc.). This review focuses on the effects of Mg2+ on excitable tissues in health and disease. As a natural membrane stabilizer, Mg2+ opposes the development of many conditions of hyperexcitability. Its beneficial recompensation and supplementation help treat hyperexcitability and should therefore be considered wherever needed.

2.
bioRxiv ; 2023 Nov 12.
Article En | MEDLINE | ID: mdl-37986848

Artificial intelligence (AI) has been used in many areas of medicine, and recently large language models (LLMs) have shown potential utility for clinical applications. However, since we do not know if the use of LLMs can accelerate the pace of genetic discovery, we used data generated from mouse genetic models to investigate this possibility. We examined whether a recently developed specialized LLM (Med-PaLM 2) could analyze sets of candidate genes generated from analysis of murine models of biomedical traits. In response to free-text input, Med-PaLM 2 correctly identified the murine genes that contained experimentally verified causative genetic factors for six biomedical traits, which included susceptibility to diabetes and cataracts. Med-PaLM 2 was also able to analyze a list of genes with high impact alleles, which were identified by comparative analysis of murine genomic sequence data, and it identified a causative murine genetic factor for spontaneous hearing loss. Based upon this Med-PaLM 2 finding, a novel bigenic model for susceptibility to spontaneous hearing loss was developed. These results demonstrate Med-PaLM 2 can analyze gene-phenotype relationships and generate novel hypotheses, which can facilitate genetic discovery.

3.
Sleep Med ; 105: 14-20, 2023 05.
Article En | MEDLINE | ID: mdl-36940515

BACKGROUND: Thyroid dysfunctions as well as sleep abnormalities are usually followed by neurological, psychiatric and/or behavioral disorders. On the other hand, changes in the brain adenosine triphosphatases (ATPases) and acetylcholinesterase (AChE) activities show significant importance in pathogenetic pathways in the evolution of numerous neuropsychiatric diseases. METHODS: This study aimed to evaluate the in vivo simultaneous effects of hypothyroidism and paradoxical sleep deprivation for 72 h on synaptosomalATPases and AChE activities of whole rat brains. In order to induce hypothyroidism, 6-n-propyl-2-thiouracil was administrated in drinking water during 21 days. The modified multiple platform method was used to induce paradoxical sleep deprivation. The AChE and ATPases activities were measured using spectrophotometric methods. RESULTS: Hypothyroidism significantly increased the activity of Na+/K+-ATPase compared to other groups, while at the same time significantly decreased AChE activity compared to the CT and SD groups. Paradoxical sleep deprivation significantly increased AChE activity compared to other groups. The simultaneous effect of hypothyroidism and sleep deprivation reduced the activity of all three enzymes (for Na+/K+-ATPase between HT/SD and HT group p < 0.0001, SD group p < 0.001,CT group p = 0.013; for ecto-ATPases between HT/SD and HT group p = 0.0034, SD group p = 0.0001, CT group p = 0.0007; for AChE between HT/SD and HT group p < 0.05, SD group p < 0.0001, CT group p < 0.0001). CONCLUSIONS: The effect of simultaneous existence of hypothyroidism and paradoxical sleep deprivation reduces the activity of the Na+/K+-ATPase, ecto-ATPases, and AChE, what is different from individual effect of hypothyroidism and paradoxical sleep deprivation itself. This knowledge could help in the choice of appropriate therapy in such condition.


Acetylcholinesterase , Hypothyroidism , Rats , Animals , Acetylcholinesterase/metabolism , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Rats, Wistar , Sleep, REM , Hypothyroidism/complications , Hypothyroidism/metabolism , Brain/metabolism
4.
Acta Clin Croat ; 60(2): 309-313, 2021 Jun.
Article En | MEDLINE | ID: mdl-34744283

The ultrasound-guided erector spinae plane (ESP) block is a novel interfascial plane block technique providing analgesic effects in different localizations of the body, in accordance with the level of administration. Although ESP block is usually performed in the thoracic region in pediatric patients, it is possible to achieve ESP block in the lumbar region as well. Postoperative pain management is essential in patients undergoing operative hip treatment, one of the most common procedures in pediatric orthopedic surgery. We report on a case of effective intraoperative analgesia achieved by ultrasound-guided lumbar ESP block and another case of effective intra- and postoperative analgesia accomplished with perineural catheter placement in addition to lumbar ESP block, both performed in children surgically treated for developmental hip disorders.


Analgesia , Nerve Block , Catheters , Child , Humans , Pain, Postoperative/prevention & control , Paraspinal Muscles
5.
Environ Toxicol Pharmacol ; 87: 103723, 2021 Oct.
Article En | MEDLINE | ID: mdl-34391906

Living organisms are commonly exposed to cadmium and other toxic metals. A vast body of research has shown the significant effects of these toxic metals on developmental processes. In order to study the role of toxic metals on early developmental stages of eukaryotes, we explored the effect of cadmium (Cd2+) contaminant on zebrafish. Thus, zebrafish embryos were exposed to 3 mg/L (16.7 µM) Cd2+ for 96 h and imaged every 24 h from the exposure onwards. Hatching rates of the eggs were determined at 72 h, followed by analyses at 96 h for: survival rate, morphometrical factors, and functional parameters of the cardiovascular system. Interestingly enough, significant hatching delays along with smaller cephalic region and some morphological abnormalities were observed in the treatment group. Moreover, substantial changes were noticed in the length of notochord and embryo, absorption of yolk sac with shorter extension, area of swimming bladder, as well as pericardium sac after Cd2+ treatment. Cadmium also caused significant abnormalities in heart physiology which could be the leading cause of mentioned morphological deformities. Herein, our results shine light on systematic acute embryological effects of cadmium in the early development of zebrafish for the first time.


Abnormalities, Drug-Induced , Abnormalities, Multiple/chemically induced , Cadmium/toxicity , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Teratogens/toxicity , Water Pollutants, Chemical/toxicity , Abnormalities, Drug-Induced/physiopathology , Animals , Cardiac Output/drug effects , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/physiology , Heart Rate/drug effects , Stroke Volume/drug effects , Zebrafish/abnormalities , Zebrafish/physiology
7.
Microsc Microanal ; 26(4): 717-730, 2020 08.
Article En | MEDLINE | ID: mdl-32588793

Occasionally, Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC) share similar nuclear features. The current study aims to quantify the differences between the investigated specimens of HT-associated PTC versus the HT alone, to reduce the subjective experience of an observer, by the use of fractal parameters as well as gray-level co-occurrence matrix (GLCM) textural parameters. We have analyzed 250 segmented nuclei per group (nn = 25 per patient and np = 10 patients per group) using the ImageJ software (NIH, Bethesda, MD, USA) as well as an in-house written code for the GLCM analysis. The mean values of parameters were calculated for each patient. The results demonstrated that the malignant cells from the HT-associated PTC specimens showed lower chromatin fractal dimension (p = 0.0321) and higher lacunarity (p = 0.0038) compared with the corresponding cells from the HT specimens. Also, there was a statistically significant difference between the investigated specimens, in the contrast, correlation, angular second moment, and homogeneity, of the GLCM corresponding to the visual texture of follicular cell chromatin. The differences in chromatin fractal and GLCM parameters could be integrated with other diagnostic methods for the improved evaluation of distinctive features of the HT-associated PTC versus the HT in cytology and surgical pathology specimens.


Chromatin/metabolism , Fractals , Hashimoto Disease/diagnosis , Thyroid Cancer, Papillary/diagnosis , Thyroid Neoplasms/diagnosis , Diagnosis, Differential , Hashimoto Disease/genetics , Hashimoto Disease/pathology , Humans , Image Processing, Computer-Assisted , Retrospective Studies , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
8.
Aquat Toxicol ; 220: 105398, 2020 Mar.
Article En | MEDLINE | ID: mdl-31891816

Recent studies suggest that 2,4-DABA, a neurotoxic excitatory amino acid present in virtually all environments, but predominantly in aquatic ecosystems may be a risk factor for development of neurodegenerative diseases in animals and humans. Despite its neurotoxicity and potential environmental importance, mechanisms underlying the excitatory and putative excitotoxic action of 2,4-DABA in neurons are still unexplored. We previously reported on extensive two-stage membrane depolarization and functional disturbances in leech Retzius neurons induced by 2,4-DABA. Current study presents the first detailed look into the electrophysiological processes leading to this depolarization. Intracellular recordings were performed on Retzius neurons of the leech Haemopis sanguisuga using glass microelectrodes and input membrane resistance (IMR) was measured by injecting hyperpolarizing current pulses through these electrodes. Results show that the excitatory effect 2,4-DABA elicits on neurons' membrane potential is dependent on sodium ions. Depolarizing effect of 5·10-3 mol/L 2,4-DABA in sodium-free solution was significantly diminished by 91% reducing it to 3.26 ±â€¯0.62 mV and its two-stage nature was abrogated. In addition to being sodium-dependent, the depolarization of membrane potential induced by this amino acid is coupled with an increase of membrane permeability, as 2,4-DABA decreases IMR by 8.27 ±â€¯1.47 MΩ (67.60%). Since present results highlight the role of sodium ions, we investigated the role of two putative sodium-dependent mechanisms in 2,4-DABA-induced excitatory effect - activation of ionotropic glutamate receptors and the electrogenic transporter for neutral amino acids. Excitatory effect of 5·10-3 mol/L 2,4-DABA was partially blocked by 10-5 mol/L 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) a non-NMDA receptor antagonist as the first stage of membrane depolarization was significantly reduced by 2.59 ±â€¯0.98 mV (40%), whilst second stage remained unaltered. Moreover, involvement of the sodium-dependent transport system for neutral amino acids was investigated by equimolar co-application of 5·10-3 mol/L 2,4-DABA and L-alanine, a competitive inhibitor of this transporter. Although L-alanine exhibited no effect on the first stage of membrane depolarization elicited by 2,4-DABA, it substantially reduced the second stage (the overall membrane depolarization) from 39.63 ±â€¯2.22 mV to 16.28 ±â€¯2.58 mV, by 58.92%. We therefore propose that the electrophysiological effect of 2,4-DABA on Retzius neurons is mediated by two distinct mechanisms, i.e. by activation of ionotropic glutamate receptor that initiates the first stage of membrane depolarization followed by the stimulation of an electrogenic sodium-dependent neutral amino acid transporter, leading to additional influx of positive charge into the cell and the second stage of depolarization.


Aminobutyrates/toxicity , Electrophysiological Phenomena/drug effects , Leeches/physiology , Neurons/drug effects , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Alanine/pharmacology , Amino Acid Transport System A/antagonists & inhibitors , Animals , Glutamic Acid/metabolism , Leeches/drug effects , Membrane Potentials/drug effects , Neurons/physiology
9.
Article En | MEDLINE | ID: mdl-30414954

The kidneys are recognized as a major target of cadmium-induced toxicity. However, all mechanisms that are involved in the early stages of cadmium nephrotoxicity, particularly considering low micromolar concentrations of cadmium ions (Cd2+) are still unknown. Therefore, the aim of this study was to investigate the effects of peritubular acute exposure to micromolar Cd2+ concentration (2.3 µmol/L) on the rapid depolarization and the rate of slow repolarization of peritubular membrane potential difference (PD), induced by luminal application of L-alanine in proximal tubular cells of frog kidney. The results showed that the luminal application of L-alanine rapidly depolarized the peritubular membrane PD of -42.00 ±â€¯11.68 mV by 23.89 ±â€¯4.15 mV with an average rate of slow repolarization of 5.64 ±â€¯0.81 mV/min. Additionally, peritubular acute exposure to Cd2+ induced change in rapid depolarization of peritubular membrane PD of -53.33 ±â€¯13.01 mV by 18.78 ±â€¯3.31 mV (P < 0.01) after luminal application of L-alanine. Also, peritubular acute exposure to Cd2+ led to statistically significant decrease in the rate of slow repolarization of peritubular membrane PD (3.53 ±â€¯0.35 mV/min; P < 0.05). In conclusion, these results suggest that peritubular acute exposure to low micromolar Cd2+ concentration decreased the rapid depolarization and the rate of slow repolarization of peritubular membrane PD induced by luminal application of L-alanine. This is followed by reduced luminal sodium-coupled transport of L-alanine and this change may be one of the possible mechanisms involved in the early stages of Cd2+-induced nephrotoxicity.


Alanine/metabolism , Cadmium/pharmacology , Kidney Tubules, Proximal/drug effects , Animals , Biological Transport/drug effects , Cadmium/administration & dosage , Female , Kidney Tubules, Proximal/metabolism , Male , Membrane Potentials/drug effects , Rana esculenta
10.
Folia Biol (Krakow) ; 63(4): 301-6, 2015.
Article En | MEDLINE | ID: mdl-26975146

The effects of Mg2+ on Ni(2+)-induced epileptiform bursting activity and input membrane resistance during this activity of leech Retzius neurons were examined using intracellular recordings. To induce epileptiform activity, 3 mmol/l NiCl2 was added into superfusing Ringer (Ri) saline. To test for dose-dependence of the effects of Mg2+ on the induced epileptiform activity, MgCl2 was added in concentrations from 1 mmol/l to 20 mmol/l Mg2+ to the Ni(2+)-containing Ri saline. Input membrane resistance (IMR) was measured in standard Ri, Ni2+ Ri and 20 mmol/l Mg2+Ni2+ Ri saline. Superfusion with Ni2+ Ri induced epileptiform bursting activity characterized by generation of paroxysmal depolarization shifts (PDSs). Parameters of epileptiform activity including PDS frequency, PDS duration, PDS amplitude and the number of spikes/PDS were measured. Magnesium suppressed Ni(2+)-induced epileptiform activity, significantly reducing values of all parameters observed in a concentration-dependent manner. The highest concentration applied of 20 mmol/l Mg2+ completely eliminated epileptiform activity. To test for the effect of Mg2+ on membrane conductance during bursting, IMR was measured. Magnesium significantly increased IMR during bursting suppression.


Leeches/cytology , Magnesium/pharmacology , Neurons/drug effects , Neurons/physiology , Animals , Cells, Cultured , Neurons/cytology , Nickel/pharmacology
...