Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Function (Oxf) ; 5(1): zqad066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38111538

RESUMEN

Alzheimer's disease (AD) develops along a continuum that spans years prior to diagnosis. Decreased muscle function and mitochondrial respiration occur years earlier in those that develop AD; however, it is unknown what causes these peripheral phenotypes in a disease of the brain. Exercise promotes muscle, mitochondria, and cognitive health and is proposed to be a potential therapeutic for AD, but no study has investigated how skeletal muscle adapts to exercise training in an AD-like context. Utilizing 5xFAD mice, an AD model that develops ad-like pathology and cognitive impairments around 6 mo of age, we examined in vivo neuromuscular function and exercise adapations (mitochondrial respiration and RNA sequencing) before the manifestation of overt cognitive impairment. We found 5xFAD mice develop neuromuscular dysfunction beginning as early as 4 mo of age, characterized by impaired nerve-stimulated muscle torque production and compound nerve action potential of the sciatic nerve. Furthermore, skeletal muscle in 5xFAD mice had altered, sex-dependent, adaptive responses (mitochondrial respiration and gene expression) to exercise training in the absence of overt cognitive impairment. Changes in peripheral systems, specifically neural communication to skeletal muscle, may be harbingers for AD and have implications for lifestyle interventions, like exercise, in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/genética , Ratones Transgénicos , Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Mitocondrias/metabolismo
2.
Front Cell Dev Biol ; 10: 987317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105350

RESUMEN

The energetic requirements of skeletal muscle to sustain movement, as during exercise, is met largely by mitochondria, which form an intricate, interconnected reticulum. Maintenance of a healthy mitochondrial reticulum is essential for skeletal muscle function, suggesting quality control pathways are spatially governed. Mitophagy, the process by which damaged and/or dysfunctional regions of the mitochondrial reticulum are removed and degraded, has emerged as an integral part of the molecular response to exercise. Upregulation of mitophagy in response to acute exercise is directly connected to energetic sensing mechanisms through AMPK. In this review, we discuss the connection of mitophagy to muscle energetics and how AMPK may spatially control mitophagy through multiple potential means.

3.
J Phys Chem B ; 126(7): 1404-1412, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35166549

RESUMEN

Hemeproteins are frequent subjects for ultrafast transient absorption spectroscopy (TAS) because of biological importance, strong UV-vis absorption, high photostability, and interesting transient dynamics that depend on redox, conformation, and ligand binding. TAS on hemeproteins is usually performed on isolated, purified proteins, though their response is likely to be different in their native molecular environment, which involves the formation of protein complexes and supercomplexes. Recently, we reported a transient absorption microscopy (TAM) experiment which elicited a transient response from hemeproteins in intact biological tissue using a visible-wavelength pump (530 nm) and probe (490 nm). Here, we find that adaptive noise canceling plus resonant galvanometer scanning enables a high-repetition-rate fiber laser source to make redox-sensitive measurements of cytochrome c (Cyt-c). We investigate the origins of the visible-wavelength response of biological tissue through TAS of intact mitochondrial respiratory supercomplexes, separated via gel electrophoresis. We find that each of these high-molecular-weight gel bands yields a TAS response characteristic of cytochrome hemes, implying that the TAS response of intact cells and tissue originates from not just Cyt-c but a mixture of respiratory cytochromes. We also find differences in excited-state lifetime between wild-type (WT) and a tafazzin-deficient (TAZ) mouse model of mitochondrial disease.


Asunto(s)
Citocromos c , Hemo , Animales , Citocromos c/química , Hemo/química , Humanos , Ratones , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Análisis Espectral
4.
J Inherit Metab Dis ; 45(1): 111-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821394

RESUMEN

Barth syndrome (BTHS) is an X-linked disorder that results from mutations in the TAFAZZIN gene, which encodes a phospholipid transacylase responsible for generating the mature form of cardiolipin in inner mitochondrial membranes. BTHS patients develop early onset cardiomyopathy and a derangement of intermediary metabolism consistent with mitochondrial disease, but the precise alterations in cardiac metabolism that distinguish BTHS from idiopathic forms of cardiomyopathy are unknown. We performed the first metabolic analysis of myocardial tissue from BTHS cardiomyopathy patients compared to age- and sex-matched patients with idiopathic dilated cardiomyopathy (DCM) and nonfailing controls. Results corroborate previous evidence for deficiencies in cardiolipin content and its linoleoyl enrichment as defining features of BTHS cardiomyopathy, and reveal a dramatic accumulation of hydrolyzed (monolyso-) cardiolipin molecular species. Respiratory chain protein deficiencies were observed in both BTHS and DCM, but a selective depletion of complex I was seen only in BTHS after controlling for an apparent loss of mitochondrial density in cardiomyopathic hearts. Distinct shifts in the expression of long-chain fatty acid oxidation enzymes and the tissue acyl-CoA profile of BTHS hearts suggest a specific block in mitochondrial fatty acid oxidation upstream of the conventional matrix beta-oxidation cycle, which may be compensated for by a greater reliance upon peroxisomal fatty acid oxidation and the catabolism of ketones, amino acids, and pyruvate to meet cardiac energy demands. These results provide a comprehensive foundation for exploring novel therapeutic strategies that target the adaptive and maladaptive metabolic features of BTHS cardiomyopathy.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiomiopatías/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ácidos Grasos/metabolismo , Aciltransferasas/genética , Adolescente , Síndrome de Barth/genética , Cardiolipinas/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Mutación , Miocardio/metabolismo , Oxidación-Reducción
5.
Mol Metab ; 45: 101160, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33400973

RESUMEN

OBJECTIVE: The immediate signals that couple exercise to metabolic adaptations are incompletely understood. Nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) produces reactive oxygen species (ROS) and plays a significant role in metabolic and vascular adaptation during stress conditions. Our objective was to determine the role of Nox4 in exercise-induced skeletal muscle metabolism. METHODS: Mice were subjected to acute exercise to assess their immediate responses. mRNA and protein expression responses to Nox4 and hydrogen peroxide (H2O2) were measured by qPCR and immunoblotting. Functional metabolic flux was measured via ex vivo fatty acid and glucose oxidation assays using 14C-labeled palmitate and glucose, respectively. A chronic exercise regimen was also utilized and the time to exhaustion along with key markers of exercise adaptation (skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase activity) were measured. Endothelial-specific Nox4-deficient mice were then subjected to the same acute exercise regimen and their subsequent substrate oxidation was measured. RESULTS: We identified key exercise-responsive metabolic genes that depend on H2O2 and Nox4 using catalase and Nox4-deficient mice. Nox4 was required for the expression of uncoupling protein 3 (Ucp3), hexokinase 2 (Hk2), and pyruvate dehydrogenase kinase 4 (Pdk4), but not the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α). Global Nox4 deletion resulted in decreased UCP3 protein expression and impaired glucose and fatty acid oxidization in response to acute exercise. Furthermore, Nox4-deficient mice demonstrated impaired adaptation to chronic exercise as measured by the time to exhaustion and activity of skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase. Importantly, mice deficient in endothelial-Nox4 similarly demonstrated attenuated glucose and fatty acid oxidation following acute exercise. CONCLUSIONS: We report that H2O2 and Nox4 promote immediate responses to exercise in skeletal muscle. Glucose and fatty acid oxidation were blunted in the Nox4-deficient mice post-exercise, potentially through regulation of UCP3 expression. Our data demonstrate that endothelial-Nox4 is required for glucose and fatty acid oxidation, suggesting inter-tissue cross-talk between the endothelium and skeletal muscle in response to exercise.


Asunto(s)
Músculo Esquelético/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Animales , Ácidos Grasos/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , NADPH Oxidasa 4/deficiencia , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno , Transcriptoma , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo
6.
J Biol Chem ; 295(35): 12485-12497, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32665401

RESUMEN

Barth syndrome is a mitochondrial myopathy resulting from mutations in the tafazzin (TAZ) gene encoding a phospholipid transacylase required for cardiolipin remodeling. Cardiolipin is a phospholipid of the inner mitochondrial membrane essential for the function of numerous mitochondrial proteins and processes. However, it is unclear how tafazzin deficiency impacts cardiac mitochondrial metabolism. To address this question while avoiding confounding effects of cardiomyopathy on mitochondrial phenotype, we utilized Taz-shRNA knockdown (TazKD ) mice, which exhibit defective cardiolipin remodeling and respiratory supercomplex instability characteristic of human Barth syndrome but normal cardiac function into adulthood. Consistent with previous reports from other models, mitochondrial H2O2 emission and oxidative damage were greater in TazKD than in wild-type (WT) hearts, but there were no differences in oxidative phosphorylation coupling efficiency or membrane potential. Fatty acid and pyruvate oxidation capacities were 40-60% lower in TazKD mitochondria, but an up-regulation of glutamate oxidation supported respiration rates approximating those with pyruvate and palmitoylcarnitine in WT. Deficiencies in mitochondrial CoA and shifts in the cardiac acyl-CoA profile paralleled changes in fatty acid oxidation enzymes and acyl-CoA thioesterases, suggesting limitations of CoA availability or "trapping" in TazKD mitochondrial metabolism. Incubation of TazKD mitochondria with exogenous CoA partially rescued pyruvate and palmitoylcarnitine oxidation capacities, implicating dysregulation of CoA-dependent intermediary metabolism rather than respiratory chain defects in the bioenergetic impacts of tafazzin deficiency. These findings support links among cardiolipin abnormalities, respiratory supercomplex instability, and mitochondrial oxidant production and shed new light on the distinct metabolic consequences of tafazzin deficiency in the mammalian heart.


Asunto(s)
Síndrome de Barth/metabolismo , Coenzima A/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Factores de Transcripción/deficiencia , Aciltransferasas , Animales , Síndrome de Barth/genética , Síndrome de Barth/patología , Coenzima A/genética , Transporte de Electrón , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Miocardio/patología , Oxidación-Reducción , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...