Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
2.
Expert Opin Drug Discov ; 18(11): 1231-1243, 2023.
Article En | MEDLINE | ID: mdl-37639708

INTRODUCTION: Drug discovery has provided modern societies with the means to fight against many diseases. In this sense, computational methods have been at the forefront, playing an important role in rationalizing the search for novel drugs. Yet, tackling phenomena such as the multi-genic nature of diseases and drug resistance are limitations of the current computational methods. Multi-tasking models for quantitative structure-biological effect relationships (mtk-QSBER) have emerged to overcome such limitations. AREAS COVERED: The present review describes an update on the fundamentals and applications of the mtk-QSBER models as tools to accelerate multiple stages/substages of the drug discovery process. EXPERT OPINION: Computational approaches are extremely important for the rationalization of the search for novel and efficacious therapeutic agents. However, they need to focus more on the multi-target drug discovery paradigm. In this sense, mtk-QSBER models are particularly suited for multi-target drug discovery, offering encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.


Drug Discovery , Quantitative Structure-Activity Relationship , Humans , Drug Discovery/methods , Drug Delivery Systems , Drug Design
3.
ACS Omega ; 7(36): 32119-32130, 2022 Sep 13.
Article En | MEDLINE | ID: mdl-36120024

Respiratory viruses are infectious agents, which can cause pandemics. Although nowadays the danger associated with respiratory viruses continues to be evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the virus responsible for the current COVID-19 pandemic, other viruses such as SARS-CoV-1, the influenza A and B viruses (IAV and IBV, respectively), and the respiratory syncytial virus (RSV) can lead to globally spread viral diseases. Also, from a biological point of view, most of these viruses can cause an organ-damaging hyperinflammatory response known as the cytokine storm (CS). Computational approaches constitute an essential component of modern drug development campaigns, and therefore, they have the potential to accelerate the discovery of chemicals able to simultaneously inhibit multiple molecular and nonmolecular targets. We report here the first multicondition model based on quantitative structure-activity relationships and an artificial neural network (mtc-QSAR-ANN) for the virtual design and prediction of molecules with dual pan-antiviral and anti-CS profiles. Our mtc-QSAR-ANN model exhibited an accuracy higher than 80%. By interpreting the different descriptors present in the mtc-QSAR-ANN model, we could retrieve several molecular fragments whose assembly led to new molecules with drug-like properties and predicted pan-antiviral and anti-CS activities.

5.
Biomedicines ; 10(2)2022 Feb 18.
Article En | MEDLINE | ID: mdl-35203699

Pancreatic cancer (PANC) is a dangerous type of cancer that is a major cause of mortality worldwide and exhibits a remarkably poor prognosis. To date, discovering anti-PANC agents remains a very complex and expensive process. Computational approaches can accelerate the search for anti-PANC agents. We report for the first time two models that combined perturbation theory with machine learning via a multilayer perceptron network (PTML-MLP) to perform the virtual design and prediction of molecules that can simultaneously inhibit multiple PANC cell lines and PANC-related proteins, such as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and the insulin-like growth factor 1 receptor (IGF1R). Both PTML-MLP models exhibited accuracies higher than 78%. Using the interpretation from one of the PTML-MLP models as a guideline, we extracted different molecular fragments desirable for the inhibition of the PANC cell lines and the aforementioned PANC-related proteins and then assembled some of those fragments to form three new molecules. The two PTML-MLP models predicted the designed molecules as potentially versatile anti-PANC agents through inhibition of the three PANC-related proteins and multiple PANC cell lines. Conclusions: This work opens new horizons for the application of the PTML modeling methodology to anticancer research.

6.
Mol Divers ; 26(5): 2523-2534, 2022 Oct.
Article En | MEDLINE | ID: mdl-34802116

Hypertension is a medical condition that affects millions of people worldwide. Despite the high efficacy of the current antihypertensive drugs, they are associated with serious side effects. Peptides constitute attractive options for chemical therapy against hypertension, and computational models can accelerate the design of antihypertensive peptides. Yet, to the best of our knowledge, all the in silico models predict only the antihypertensive activity of peptides while neglecting their inherent toxic potential to red blood cells. In this work, we report the first sequence-based model that combines perturbation theory and machine learning through multilayer perceptron networks (SB-PTML-MLP) to enable the simultaneous screening of antihypertensive activity and hemotoxicity of peptides. We have interpreted the molecular descriptors present in the model from a physicochemical and structural point of view. By strictly following such interpretations as guidelines, we performed two tasks. First, we selected amino acids with favorable contributions to both the increase of the antihypertensive activity and the diminution of hemotoxicity. Then, we assembled those suitable amino acids, virtually designing peptides that were predicted by the SB-PTML-MLP model as antihypertensive agents exhibiting low hemotoxicity. The potentiality of the SB-PTML-MLP model as a tool for designing potent and safe antihypertensive peptides was confirmed by predictions performed by online computational tools reported in the scientific literature. The methodology presented here can be extended to other pharmacological applications of peptides.


Antihypertensive Agents , Hypertension , Amino Acids , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Humans , Hypertension/drug therapy , Machine Learning , Peptides/chemistry , Peptides/pharmacology
7.
Biomolecules ; 11(12)2021 12 04.
Article En | MEDLINE | ID: mdl-34944476

Inflammation involves a complex biological response of the body tissues to damaging stimuli. When dysregulated, inflammation led by biomolecular mediators such as caspase-1 and tumor necrosis factor-alpha (TNF-alpha) can play a detrimental role in the progression of different medical conditions such as cancer, neurological disorders, autoimmune diseases, and cytokine storms caused by viral infections such as COVID-19. Computational approaches can accelerate the search for dual-target drugs able to simultaneously inhibit the aforementioned proteins, enabling the discovery of wide-spectrum anti-inflammatory agents. This work reports the first multicondition model based on quantitative structure-activity relationships and a multilayer perceptron neural network (mtc-QSAR-MLP) for the virtual screening of agency-regulated chemicals as versatile anti-inflammatory therapeutics. The mtc-QSAR-MLP model displayed accuracy higher than 88%, and was interpreted from a physicochemical and structural point of view. When using the mtc-QSAR-MLP model as a virtual screening tool, we could identify several agency-regulated chemicals as dual inhibitors of caspase-1 and TNF-alpha, and the experimental information later retrieved from the scientific literature converged with our computational results. This study supports the capabilities of our mtc-QSAR-MLP model in anti-inflammatory therapy with direct applications to current health issues such as the COVID-19 pandemic.


Anti-Inflammatory Agents/pharmacology , Caspase Inhibitors/pharmacology , Drug Repositioning/methods , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Anti-Inflammatory Agents/chemistry , Caspase 1/metabolism , Caspase Inhibitors/chemistry , Humans , Inflammation/drug therapy , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism , COVID-19 Drug Treatment
8.
Curr Top Med Chem ; 21(30): 2687-2693, 2021.
Article En | MEDLINE | ID: mdl-34636311

Respiratory viruses continue to afflict mankind. Among them, pathogens such as coronaviruses [including the current pandemic agent known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] and the one causing influenza A (IAV) are highly contagious and deadly. These can evade the immune system defenses while causing a hyperinflammatory response that can damage different tissues/organs. Simultaneously targeting several immunomodulatory proteins is a plausible antiviral strategy since it could lead to the discovery of indirect-acting pan-antiviral (IAPA) agents for the treatment of diseases caused by respiratory viruses. In this context, computational approaches, which are an essential part of the modern drug discovery campaigns, could accelerate the identification of multi-target immunomodulators. This perspective discusses the usefulness of computational multi-target drug discovery for the virtual screening (drug repurposing) of IAPA agents capable of boosting the immune system through the activation of the toll-like receptor 7 (TLR7) and/or the stimulator of interferon genes (STING) while inhibiting key inflammation-related proteins such as caspase-1 and tumor necrosis factor-alpha (TNF-α).


Antiviral Agents , Drug Discovery , Respiratory Tract Infections/drug therapy , Antiviral Agents/pharmacology , COVID-19 , Computational Biology , Drug Evaluation, Preclinical , Humans , Pandemics , Respiratory Tract Infections/virology , SARS-CoV-2/drug effects
9.
Antibiotics (Basel) ; 10(8)2021 Aug 19.
Article En | MEDLINE | ID: mdl-34439055

Tuberculosis remains the most afflicting infectious disease known by humankind, with one quarter of the population estimated to have it in the latent state. Discovering antituberculosis drugs is a challenging, complex, expensive, and time-consuming task. To overcome the substantial costs and accelerate drug discovery and development, drug repurposing has emerged as an attractive alternative to find new applications for "old" drugs and where computational approaches play an essential role by filtering the chemical space. This work reports the first multi-condition model based on quantitative structure-activity relationships and an ensemble of neural networks (mtc-QSAR-EL) for the virtual screening of potential antituberculosis agents able to act as multi-strain inhibitors. The mtc-QSAR-EL model exhibited an accuracy higher than 85%. A physicochemical and fragment-based structural interpretation of this model was provided, and a large dataset of agency-regulated chemicals was virtually screened, with the mtc-QSAR-EL model identifying already proven antituberculosis drugs while proposing chemicals with great potential to be experimentally repurposed as antituberculosis (multi-strain inhibitors) agents. Some of the most promising molecules identified by the mtc-QSAR-EL model as antituberculosis agents were also confirmed by another computational approach, supporting the capabilities of the mtc-QSAR-EL model as an efficient tool for computational drug repurposing.

11.
Front Chem ; 9: 634663, 2021.
Article En | MEDLINE | ID: mdl-33777898

Parasitic diseases remain as unresolved health issues worldwide. While for some parasites the treatments involve drug combinations with serious side effects, for others, chemical therapies are inefficient due to the emergence of drug resistance. This urges the search for novel antiparasitic agents able to act through multiple mechanisms of action. Here, we report the first multi-target model based on quantitative structure-activity relationships and a multilayer perceptron neural network (mt-QSAR-MLP) to virtually design and predict versatile inhibitors of proteins involved in the survival and/or infectivity of different pathogenic parasites. The mt-QSAR-MLP model exhibited high accuracy (>80%) in both training and test sets for the classification/prediction of protein inhibitors. Several fragments were directly extracted from the physicochemical and structural interpretations of the molecular descriptors in the mt-QSAR-MLP model. Such interpretations enabled the generation of four molecules that were predicted as multi-target inhibitors against at least three of the five parasitic proteins reported here with two of the molecules being predicted to inhibit all the proteins. Docking calculations converged with the mt-QSAR-MLP model regarding the multi-target profile of the designed molecules. The designed molecules exhibited drug-like properties, complying with Lipinski's rule of five, as well as Ghose's filter and Veber's guidelines.

12.
Curr Drug Targets ; 22(6): 631-655, 2021.
Article En | MEDLINE | ID: mdl-33397265

Artificial Intelligence revolutionizes the drug development process that can quickly identify potential biologically active compounds from millions of candidate within a short period. The present review is an overview based on some applications of Machine Learning based tools, such as GOLD, Deep PVP, LIB SVM, etc. and the algorithms involved such as support vector machine (SVM), random forest (RF), decision tree and Artificial Neural Network (ANN), etc. at various stages of drug designing and development. These techniques can be employed in SNP discoveries, drug repurposing, ligand-based drug design (LBDD), Ligand-based Virtual Screening (LBVS) and Structure- based Virtual Screening (SBVS), Lead identification, quantitative structure-activity relationship (QSAR) modeling, and ADMET analysis. It is demonstrated that SVM exhibited better performance in indicating that the classification model will have great applications on human intestinal absorption (HIA) predictions. Successful cases have been reported which demonstrate the efficiency of SVM and RF models in identifying JFD00950 as a novel compound targeting against a colon cancer cell line, DLD-1, by inhibition of FEN1 cytotoxic and cleavage activity. Furthermore, a QSAR model was also used to predict flavonoid inhibitory effects on AR activity as a potent treatment for diabetes mellitus (DM), using ANN. Hence, in the era of big data, ML approaches have been evolved as a powerful and efficient way to deal with the huge amounts of generated data from modern drug discovery to model small-molecule drugs, gene biomarkers and identifying the novel drug targets for various diseases.


Artificial Intelligence , Big Data , Drug Discovery , Pharmaceutical Preparations , Precision Medicine , Humans , Ligands , Machine Learning
13.
Curr Top Med Chem ; 21(7): 661-675, 2021.
Article En | MEDLINE | ID: mdl-33463472

BACKGROUND: Cyclin-dependent kinase 4 (CDK4) and the human epidermal growth factor receptor 2 (HER2) are two of the most promising targets in oncology research. Thus, a series of computational approaches have been applied to the search for more potent inhibitors of these cancerrelated proteins. However, current approaches have focused on chemical analogs while predicting the inhibitory activity against only one of these targets, but never against both. AIMS: We report the first perturbation model combined with machine learning (PTML) to enable the design and prediction of dual inhibitors of CDK4 and HER2. METHODS: Inhibition data for CDK4 and HER2 were extracted from ChEMBL. The PTML model relied on artificial neural networks to allow the classification/prediction of molecules as active or inactive against CDK4 and/or HER2. RESULTS: The PTML model displayed sensitivity and specificity higher than 80% in the training set. The same statistical metrics had values above 75% in the test set. We extracted several molecular fragments and estimated their quantitative contributions to the inhibitory activity against CDK4 and HER2. Guided by the physicochemical and structural interpretations of the molecular descriptors in the PTML model, we designed six molecules by assembling several fragments with positive contributions. Three of these molecules were predicted as potent dual inhibitors of CDK4 and HER2, while the other three were predicted as inhibitors of at least one of these proteins. All the molecules complied with Lipinski's rule of five and its variants. CONCLUSION: The present work represents an encouraging alternative for future anticancer chemotherapies.


Drug Discovery/methods , Enzyme Inhibitors/chemistry , Programming Languages , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Neural Networks, Computer , Receptor, ErbB-2/antagonists & inhibitors
15.
Curr Top Med Chem ; 20(19): 1661-1676, 2020.
Article En | MEDLINE | ID: mdl-32515311

BACKGROUND: Alzheimer's disease is characterized by a progressive pattern of cognitive and functional impairment, which ultimately leads to death. Computational approaches have played an important role in the context of drug discovery for anti-Alzheimer's therapies. However, most of the computational models reported to date have been focused on only one protein associated with Alzheimer's, while relying on small datasets of structurally related molecules. OBJECTIVE: We introduce the first model combining perturbation theory and machine learning based on artificial neural networks (PTML-ANN) for simultaneous prediction and design of inhibitors of three Alzheimer's disease-related proteins, namely glycogen synthase kinase 3 beta (GSK3B), histone deacetylase 1 (HDAC1), and histone deacetylase 6 (HDAC6). METHODS: The PTML-ANN model was obtained from a dataset retrieved from ChEMBL, and it relied on a classification approach to predict chemicals as active or inactive. RESULTS: The PTML-ANN model displayed sensitivity and specificity higher than 85% in both training and test sets. The physicochemical and structural interpretation of the molecular descriptors in the model permitted the direct extraction of fragments suggested to favorably contribute to enhancing the multitarget inhibitory activity. Based on this information, we assembled ten molecules from several fragments with positive contributions. Seven of these molecules were predicted as triple target inhibitors while the remaining three were predicted as dual-target inhibitors. The estimated physicochemical properties of the designed molecules complied with Lipinski's rule of five and its variants. CONCLUSION: This work opens new horizons toward the design of multi-target inhibitors for anti- Alzheimer's therapies.


Alzheimer Disease/drug therapy , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Machine Learning , Neural Networks, Computer , Protein Kinase Inhibitors/pharmacology , Alzheimer Disease/metabolism , Drug Design , Glycogen Synthase Kinase 3 beta/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry
16.
Mini Rev Med Chem ; 20(14): 1357-1374, 2020.
Article En | MEDLINE | ID: mdl-32013845

Fragment-Based Drug Design (FBDD) has established itself as a promising approach in modern drug discovery, accelerating and improving lead optimization, while playing a crucial role in diminishing the high attrition rates at all stages in the drug development process. On the other hand, FBDD has benefited from the application of computational methodologies, where the models derived from the Quantitative Structure-Activity Relationships (QSAR) have become consolidated tools. This mini-review focuses on the evolution and main applications of the QSAR paradigm in the context of FBDD in the last five years. This report places particular emphasis on the QSAR models derived from fragment-based topological approaches to extract physicochemical and/or structural information, allowing to design potentially novel mono- or multi-target inhibitors from relatively large and heterogeneous databases. Here, we also discuss the need to apply multi-scale modeling, to exemplify how different datasets based on target inhibition can be simultaneously integrated and predicted together with other relevant endpoints such as the biological activity against non-biomolecular targets, as well as in vitro and in vivo toxicity and pharmacokinetic properties. In this context, seminal papers are briefly analyzed. As huge amounts of data continue to accumulate in the domains of the chemical, biological and biomedical sciences, it has become clear that drug discovery must be viewed as a multi-scale optimization process. An ideal multi-scale approach should integrate diverse chemical and biological data and also serve as a knowledge generator, enabling the design of potentially optimal chemicals that may become therapeutic agents.


Drug Design , Models, Molecular , Quantitative Structure-Activity Relationship , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Gram-Negative Bacteria/drug effects , HIV Infections/drug therapy , Hepacivirus/drug effects , Humans , Neural Networks, Computer
17.
Curr Top Med Chem ; 20(4): 293-304, 2020.
Article En | MEDLINE | ID: mdl-31808387

BACKGROUND: Staphylococcus aureus is a gram-positive spherical bacterium commonly present in nasal fossae and in the skin of healthy people; however, in high quantities, it can lead to complications that compromise health. The pathologies involved include simple infections, such as folliculitis, acne, and delay in the process of wound healing, as well as serious infections in the CNS, meninges, lung, heart, and other areas. AIM: This research aims to propose a series of molecules derived from 2-naphthoic acid as a bioactive in the fight against S. aureus bacteria through in silico studies using molecular modeling tools. METHODS: A virtual screening of analogues was done in consideration of the results that showed activity according to the prediction model performed in the KNIME Analytics Platform 3.6, violations of the Lipinski rule, absorption rate, cytotoxicity risks, energy of binder-receptor interaction through molecular docking, and the stability of the best profile ligands in the active site of the proteins used (PDB ID 4DXD and 4WVG). RESULTS: Seven of the 48 analogues analyzed showed promising results for bactericidal action against S. aureus. CONCLUSION: It is possible to conclude that ten of the 48 compounds derived from 2-naphthoic acid presented activity based on the prediction model generated, of which seven presented no toxicity and up to one violation to the Lipinski rule.


Anti-Bacterial Agents/pharmacology , Machine Learning , Naphthalenes/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Drug Evaluation, Preclinical , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Naphthalenes/chemistry
18.
Mini Rev Med Chem ; 19(19): 1560-1563, 2019.
Article En | MEDLINE | ID: mdl-31833463

This work discusses the idea that drug discovery, instead of being performed through a series of filtering-based stages, should be viewed as a multi-scale optimization problem. Here, the most promising multi-scale models are analyzed in terms of their applications, advantages, and limitations in the search for more potent and safer chemicals against infectious diseases. Multi-scale de novo drug design is highlighted as an emerging paradigm, able to accelerate the discovery of more effective antimicrobial agents.


Anti-Infective Agents/chemistry , Communicable Diseases/drug therapy , Drug Design , Models, Biological , Anti-Infective Agents/therapeutic use , Communicable Diseases/pathology , Humans , Quantitative Structure-Activity Relationship
20.
Mol Divers ; 23(3): 555-572, 2019 Aug.
Article En | MEDLINE | ID: mdl-30421269

Epigenetics has become a focus of interest in drug discovery. In this sense, bromodomain-containing proteins have emerged as potential epigenetic targets in cancer research and other therapeutic areas. Several computational approaches have been applied to the prediction of bromodomain inhibitors. Nevertheless, such approaches have several drawbacks such as the fact that they predict activity against only one bromodomain-containing protein, using structurally related compounds. Also, there are no reports focused on meaningfully analyzing the physicochemical/structural features that are necessary for the design of a bromodomain inhibitor. This work describes the development of two different multi-target models based on quantitative structure-activity relationships (mt-QSAR) for the prediction and in silico design of multi-target bromodomain inhibitors against the proteins BRD2, BRD3, and BRD4. The first model relied on linear discriminant analysis (LDA) while the second focused on artificial neural networks. Both models exhibited accuracies higher than 85% in the dataset. Several molecular fragments were extracted, and their contributions to the inhibitory activity against the three BET proteins were calculated by the LDA model. Six molecules were designed by assembling the fragments with positive contributions, and they were predicted as multi-target BET bromodomain inhibitors by the two mt-QSAR models. Molecular docking calculations converged with the predictions performed by the mt-QSAR models, suggesting that the designed molecules can exhibit potent activity against the three BET proteins. These molecules complied with the Lipinski's rule of five.


Computer Simulation , Drug Design , Quantitative Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Molecular Docking Simulation , Protein Domains
...