Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 8(5): 202279, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34084545

RESUMEN

We investigate theoretically the ballistic motion of small legged insects and legless larvae after a jump. Notwithstanding their completely different morphologies and jumping strategies, some legged and legless animals have convergently evolved to jump with a take-off angle of 60°, which differs significantly from the leap angle of 45° that allows reaching maximum range. We show that in the presence of uniformly distributed random obstacles the probability of a successful jump is directly proportional to the area under the trajectory. In the presence of negligible air drag, the probability is maximized by a take-off angle of 60°. The numerical calculation of the trajectories shows that they are significantly affected by air drag, but the maximum probability of a successful jump still occurs for a take-off angle of 59-60° in a wide range of the dimensionless Reynolds and Froude numbers that control the process. We discuss the implications of our results for the exploration of unknown environments such as planets and disaster scenarios by using jumping robots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA