Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 12(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35204810

RESUMEN

Concerning human and environmental health, safe alternatives to synthetic pesticides are urgently needed. Many of the currently used synthetic pesticides are not authorized for application in organic agriculture. In addition, the developed resistances of various pests against classical pesticides necessitate the urgent demand for efficient and safe products with novel modes of action. Botanical pesticides are assumed to be effective against various crop pests, and they are easily biodegradable and available in high quantities and at a reasonable cost. Many of them may act by diverse yet unexplored mechanisms of action. It is therefore surprising that only few plant species have been developed for commercial usage as biopesticides. This article reviews the status of botanical pesticides, especially in Europe and Mediterranean countries, deepening their active principles and mechanisms of action. Moreover, some constraints and challenges in the development of novel biopesticides are highlighted.


Asunto(s)
Insecticidas , Plaguicidas , Agentes de Control Biológico/farmacología , Europa (Continente) , Humanos , Insecticidas/farmacología , Plaguicidas/farmacología , Plantas
2.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358961

RESUMEN

Virtually all heterotrophs incorporate carbon dioxide by anaplerotic fixation. Little explored, however, is the interdependency of pathways and rates of CO2fixation on the concurrent usage of organic substrate(s). Potentially, this could reveal which substrates out of a pool of dissolved organic carbon are utilised by environmental microorganisms. To explore this possibility, Bacillus subtilis W23 was grown in a minimal medium with normalised amounts of either glucose, lactate or malate as only organic substrates, each together with 1 g/L NaH13CO3. Incorporation of H13CO3- was traced by elemental analysis-isotope ratio mass spectrometry of biomass and gas chromatography-mass spectrometry of protein-derived amino acids. Until the late logarithmic phase, 13C incorporation into the tricarboxylic acid cycle increased with time and occurred via [4-13C]oxaloacetate formed by carboxylation of pyruvate. The levels of 13C incorporation were highest for growth on glucose and lowest on malate. Incorporation of 13C into gluconeogenesis products was mainly detected in the lactate and malate experiment, whereas glucose down-regulated this path. A proof-of-principle study with a natural groundwater community confirmed the ability to determine incorporation from H13CO3- by natural communities leading to specific labelling patterns. This underlines the potential of the labelling approach to characterise carbon sources of heterotrophic microorganisms in their natural environments.


Asunto(s)
Dióxido de Carbono , Gluconeogénesis , Bacterias , Isótopos de Carbono , Marcaje Isotópico
3.
PLoS One ; 10(9): e0136914, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26368558

RESUMEN

Mycobacterium tuberculosis (Mtb) possesses a genetic repertoire for metabolic pathways, which are specific and fit to its intracellular life style. Under in vitro conditions, Mtb is known to use arginine as a nitrogen source, but the metabolic pathways for arginine utilization have not been identified. Here we show that, in the presence of arginine, Mtb upregulates a gene cluster which includes an ornithine aminotransferase (rocD) and Rv2323c, a gene of unknown function. Isotopologue analysis by using 13C- or 15N-arginine revealed that in Mtb arginine is not only used as nitrogen source but also as carbon source for the formation of amino acids, in particular of proline. Surprisingly, rocD, which is widespread in other bacteria and is part of the classical arginase pathway turned out to be naturally deleted in Mtb, but not in non-tuberculous mycobacteria. Mtb lacking Rv2323c showed a growth defect on arginine, did not produce proline from arginine, and incorporated less nitrogen derived from arginine in its core nitrogen metabolism. We conclude that the highly induced pathway for arginine utilization in Mtb differs from that of other bacteria including non-tuberculous mycobacteria, probably reflecting a specific metabolic feature of intracellular Mtb.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Mutación , Mycobacterium tuberculosis/genética , Ornitina-Oxo-Ácido Transaminasa/genética , Arginina/biosíntesis , Arginina/genética , Mycobacterium tuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA