Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 3830, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737313

RESUMEN

The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/química , ARN Mitocondrial/química , ARN de Transferencia/química , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido
2.
iScience ; 12: 76-86, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30677741

RESUMEN

The human mitochondrial translational initiation factor 3 (IF3mt) carries mitochondrial-specific amino acid extensions at both its N and C termini (N- and C-terminal extensions [NTE and CTE, respectively]), when compared with its eubacterial counterpart. Here we present 3.3- to 3.5-Å-resolution cryoelectron microscopic structures of the mammalian 28S mitoribosomal subunit in complex with human IF3mt. Unique contacts observed between the 28S subunit and N-terminal domain of IF3mt explain its unusually high affinity for the 28S subunit, whereas the position of the mito-specific NTE suggests NTE's role in binding of initiator tRNA to the 28S subunit. The location of the C-terminal domain (CTD) clarifies its anti-association activity, whereas the orientation of the mito-specific CTE provides a mechanistic explanation for its role in destabilizing initiator tRNA in the absence of mRNA. Furthermore, our structure hints at a possible role of the CTD in recruiting leaderless mRNAs for translation initiation. Our findings highlight unique features of IF3mt in mitochondrial translation initiation.

3.
Mitochondrion ; 39: 1-8, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28804013

RESUMEN

Initiation factor 3 (IF3) is a conserved translation factor. Mutations in mitochondrial IF3 (IF3mt) have been implicated in disease pathology. Escherichia coli infCΔ55, compromised for IF3 activity, has provided an excellent heterologous system for IF3mt structure-function analysis. IF3mt allowed promiscuous initiation from AUA, AUU and ACG codons but avoided initiation with initiator tRNAs lacking the conserved 3GC pairs in their anticodon stems. Expression of IF3mt N-terminal domain, or IF3mt devoid of its typical N-, and C-terminal extensions improved fidelity of initiation in E. coli. The observations suggest that the IF3mt terminal extensions relax the fidelity of translational initiation in mitochondria.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas Mitocondriales/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 3 Procariótico de Iniciación/metabolismo , Codón Iniciador , Humanos , Proteínas Mitocondriales/genética , Factor 3 Procariótico de Iniciación/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(20): 7284-9, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799711

RESUMEN

The mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing 13 membrane proteins that form essential components of the complexes involved in oxidative phosphorylation or ATP generation for the eukaryotic cell. The mammalian 55S mitoribosome contains significantly smaller rRNAs and a large mass of mitochondrial ribosomal proteins (MRPs), including large mito-specific amino acid extensions and insertions in MRPs that are homologous to bacterial ribosomal proteins and an additional 35 mito-specific MRPs. Here we present the cryo-EM structure analysis of the small (28S) subunit (SSU) of the 55S mitoribosome. We find that the mito-specific extensions in homologous MRPs generally are involved in inter-MRP contacts and in contacts with mito-specific MRPs, suggesting a stepwise evolution of the current architecture of the mitoribosome. Although most of the mito-specific MRPs and extensions of homologous MRPs are situated on the peripheral regions, they also contribute significantly to the formation of linings of the mRNA and tRNA paths, suggesting a tailor-made structural organization of the mito-SSU for the recruitment of mito-specific mRNAs, most of which do not possess a 5' leader sequence. In addition, docking of previously published coordinates of the large (39S) subunit (LSU) into the cryo-EM map of the 55S mitoribosome reveals that mito-specific MRPs of both the SSU and LSU are involved directly in the formation of six of the 15 intersubunit bridges.


Asunto(s)
Mitocondrias/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Animales , Sitios de Unión , Bovinos , Microscopía por Crioelectrón , Citoplasma/metabolismo , Proteínas de Unión al GTP/metabolismo , Procesamiento de Imagen Asistido por Computador , Hígado/metabolismo , Conformación Proteica , ARN Mensajero/metabolismo , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo
5.
Front Physiol ; 4: 183, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23908630

RESUMEN

Defects in mitochondrial ribosomal proteins (MRPs) cause various diseases in humans. Because of the essential role of MRPs in synthesizing the essential subunits of oxidative phosphorylation (OXPHOS) complexes, identifying all of the protein components involved in the mitochondrial translational machinery is critical. Initially, we identified 79 MRPs; however, identifying MRPs with no clear homologs in bacteria and yeast mitochondria was challenging, due to limited availability of expressed sequence tags (ESTs) in the databases available at that time. With the improvement in genome sequencing and increased sensitivity of mass spectrometry (MS)-based technologies, we have established four previously known proteins as MRPs and have confirmed the identification of ICT1 (MRP58) as a ribosomal protein. The newly identified MRPs are MRPS37 (Coiled-coil-helix-coiled-coil-helix domain containing protein 1-CHCHD1), MRPS38 (Aurora kinase A interacting protein1, AURKAIP1), MRPS39 (Pentatricopeptide repeat-containing protein 3, PTCD3), in the small subunit and MRPL59 (CR-6 interacting factor 1, CRIF1) in the large subunit. Furthermore, we have demonstrated the essential roles of CHCHD1, AURKAIP1, and CRIF1in mitochondrial protein synthesis by siRNA knock-down studies, which had significant effects on the expression of mitochondrially encoded proteins.

6.
PLoS One ; 8(3): e57905, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23483938

RESUMEN

Interferon inducible protein kinase PKR is an essential component of innate immunity. It is activated by long stretches of dsRNA and provides the first line of host defense against pathogens by inhibiting translation initiation in the infected cell. Many cellular and viral transcripts contain nucleoside modifications and/or tertiary structure that could affect PKR activation. We have previously demonstrated that a 5'-end triphosphate-a signature of certain viral and bacterial transcripts-confers the ability of relatively unstructured model RNA transcripts to activate PKR to inhibit translation, and that this activation is abrogated by certain modifications present in cellular RNAs. In order to understand the biological implications of native RNA tertiary structure and nucleoside modifications on PKR activation, we study here the heavily modified cellular tRNAs and the unmodified or the lightly modified mitochondrial tRNAs (mt-tRNA). We find that both a T7 transcript of yeast tRNA(Phe) and natively extracted total bovine liver mt-tRNA activate PKR in vitro, whereas native E. coli, bovine liver, yeast, and wheat tRNA(Phe) do not, nor do a variety of base- or sugar-modified T7 transcripts. These results are further supported by activation of PKR by a natively folded T7 transcript of tRNA(Phe)in vivo supporting the importance of tRNA modification in suppressing PKR activation in cells. We also examine PKR activation by a T7 transcript of the A14G pathogenic mutant of mt-tRNA(Leu), which is known to dimerize, and find that the misfolded dimeric form activates PKR in vitro while the monomeric form does not. Overall, the in vitro and in vivo findings herein indicate that tRNAs have an intrinsic ability to activate PKR and that nucleoside modifications and native RNA tertiary folding may function, at least in part, to suppress such activation, thus serving to distinguish self and non-self tRNA in innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Conformación de Ácido Nucleico , Nucleósidos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Secuencia de Bases , Bovinos , Línea Celular Tumoral , Dimerización , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , ARN/química , ARN/genética , ARN Mitocondrial , ARN de Transferencia/genética , Saccharomyces cerevisiae/metabolismo
7.
Biochim Biophys Acta ; 1819(9-10): 1035-54, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22172991

RESUMEN

Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales/biosíntesis , Factor 2 Procariótico de Iniciación , ARN Mensajero , Animales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
8.
Biochim Biophys Acta ; 1814(12): 1779-84, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22015679

RESUMEN

Mammalian mitochondrial translational initiation factor 3 (IF3(mt)) binds to the small subunit of the ribosome displacing the large subunit during the initiation of protein biosynthesis. About half of the proteins in mitochondrial ribosomes have homologs in bacteria while the remainder are unique to the mitochondrion. To obtain information on the ribosomal proteins located near the IF3(mt) binding site, cross-linking studies were carried out followed by identification of the cross-linked proteins by mass spectrometry. IF3(mt) cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins S5, S9, S10, and S18-2 and to unique mitochondrial ribosomal proteins MRPS29, MRPS32, MRPS36 and PTCD3 (Pet309) which has now been identified as a small subunit ribosomal protein. IF3(mt) has extensions on both the N- and C-termini compared to the bacterial factors. Cross-linking of a truncated derivative lacking these extensions gives the same hits as the full length IF3(mt) except that no cross-links were observed to MRPS36. IF3 consists of two domains separated by a flexible linker. Cross-linking of the isolated N- and C-domains was observed to a range of ribosomal proteins particularly with the C-domain carrying the linker which showed significant cross-linking to several ribosomal proteins not found in prokaryotes.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Animales , Bovinos , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Biológicos , Modelos Moleculares , Iniciación de la Cadena Peptídica Traduccional/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética
9.
Proc Natl Acad Sci U S A ; 108(10): 3918-23, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368145

RESUMEN

Mitochondria have their own translational machineries for the synthesis of thirteen polypeptide chains that are components of the complexes that participate in the process of oxidative phosphorylation (or ATP generation). Translation initiation in mammalian mitochondria requires two initiation factors, IF2(mt) and IF3(mt), instead of the three that are present in eubacteria. The mammalian IF2(mt) possesses a unique 37 amino acid insertion domain, which is known to be important for the formation of the translation initiation complex. We have obtained a three-dimensional cryoelectron microscopic map of the mammalian IF2(mt) in complex with initiator fMet-tRNA(iMet) and the eubacterial ribosome. We find that the 37 amino acid insertion domain interacts with the same binding site on the ribosome that would be occupied by the eubacterial initiation factor IF1, which is absent in mitochondria. Our finding suggests that the insertion domain of IF2(mt) mimics the function of eubacterial IF1, by blocking the ribosomal aminoacyl-tRNA binding site (A site) at the initiation step.


Asunto(s)
Eubacterium/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Aminoácidos/química , Animales , Bovinos , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/química , Modelos Moleculares , Fosforilación Oxidativa , Ribosomas/metabolismo
10.
Free Radic Biol Med ; 50(10): 1234-41, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21295137

RESUMEN

Reactive oxygen species (ROS) are released at the mitochondrial inner membrane by the electron transport chain (ETC). Increasing evidence suggests that mitochondrial H2O2 acts as a signaling molecule and participates in the (feedback) regulation of mitochondrial activity and turnover. It seems likely that key mitochondrial components contain redox-sensitive thiols that help to adapt protein function to changes in electron flow. However, the identity of most redox-regulated mitochondrial proteins remains to be defined. Thioredoxin 2 (Trx2) is the major protein-thiol-reducing oxidoreductase in the mitochondrial matrix. We used in situ mechanism-based kinetic trapping to identify disulfide-exchange interactions of Trx2 within functional mitochondria of intact cells. Mass spectrometry successfully identified known and suspected Trx2 target proteins and, in addition, revealed a set of new candidate target proteins. Our results suggest that the mitochondrial protein biosynthesis machinery is a major target of ETC-derived ROS. In particular, we identified mitochondrial methionyl-tRNA synthetase (mtMetRS) as one of the most prominent Trx2 target proteins. We show that an increase in ETC-derived oxidants leads to an increase in mtMetRS oxidation in intact cells. In conclusion, we find that in situ kinetic trapping provides starting points for future functional studies of intramitochondrial redox regulation.


Asunto(s)
Mitocondrias/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Células Cultivadas , Clonación Molecular , Transporte de Electrón , Humanos , Cinética , Metionina-ARNt Ligasa/aislamiento & purificación , Metionina-ARNt Ligasa/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tiorredoxinas/biosíntesis , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
11.
J Mol Biol ; 406(2): 257-74, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21168417

RESUMEN

Human mitochondrial mRNAs utilize the universal AUG and the unconventional isoleucine AUA codons for methionine. In contrast to translation in the cytoplasm, human mitochondria use one tRNA, hmtRNA(Met)(CAU), to read AUG and AUA codons at both the peptidyl- (P-), and aminoacyl- (A-) sites of the ribosome. The hmtRNA(Met)(CAU) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position 34 (f(5)C(34)), and a cytidine substituting for the invariant uridine at position 33 of the canonical U-turn in tRNAs. The structure of the tRNA anticodon stem and loop domain (hmtASL(Met)(CAU)), determined by NMR restrained molecular modeling, revealed how the f(5)C(34) modification facilitates the decoding of AUA at the P- and the A-sites. The f(5)C(34) defined a reduced conformational space for the nucleoside, in what appears to have restricted the conformational dynamics of the anticodon bases of the modified hmtASL(Met)(CAU). The hmtASL(Met)(CAU) exhibited a C-turn conformation that has some characteristics of the U-turn motif. Codon binding studies with both Escherichia coli and bovine mitochondrial ribosomes revealed that the f(5)C(34) facilitates AUA binding in the A-site and suggested that the modification favorably alters the ASL binding kinetics. Mitochondrial translation by many organisms, including humans, sometimes initiates with the universal isoleucine codons AUU and AUC. The f(5)C(34) enabled P-site codon binding to these normally isoleucine codons. Thus, the physicochemical properties of this one modification, f(5)C(34), expand codon recognition from the traditional AUG to the non-traditional, synonymous codons AUU and AUC as well as AUA, in the reassignment of universal codons in the mitochondria.


Asunto(s)
Anticodón/química , Mitocondrias/química , ARN de Transferencia de Metionina/química , Ribosomas/química , Animales , Anticodón/genética , Emparejamiento Base , Secuencia de Bases , Bovinos , Citidina/análogos & derivados , Citidina/química , Citidina/genética , Escherichia coli/genética , Humanos , Mitocondrias/genética , Datos de Secuencia Molecular , ARN de Transferencia de Metionina/genética , Ribosomas/genética , Relación Estructura-Actividad
12.
J Biol Chem ; 285(45): 34991-8, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20739282

RESUMEN

The mammalian mitochondrial inner membrane protein Oxa1L is involved in the insertion of a number of mitochondrial translation products into the inner membrane. During this process, the C-terminal tail of Oxa1L (Oxa1L-CTT) binds mitochondrial ribosomes and is believed to coordinate the synthesis and membrane insertion of the nascent chains into the membrane. The C-terminal tail of Oxa1L does not contain any Cys residues. Four variants of this protein with a specifically placed Cys residue at position 4, 39, 67, or 94 of Oxa1L-CTT have been prepared. These Cys residues have been derivatized with a fluorescent probe, tetramethylrhodamine-5-maleimide, for biophysical studies. Oxa1L-CTT forms oligomers cooperatively with a binding constant in the submicromolar range. Fluorescence anisotropy and fluorescence lifetime measurements indicate that contacts near a long helix close to position 39 of Oxa1L-CTT occur during oligomer formation. Fluorescence correlation spectroscopy measurements demonstrate that all of the Oxa1L-CTT derivatives bind to mammalian mitochondrial ribosomes. Steady-state fluorescence quenching and fluorescence lifetime data indicate that there are extensive contacts between Oxa1L-CTT and the ribosome-encompassing regions around positions 39, 67, and 94. The results of this study suggest that Oxa1L-CTT undergoes conformational changes and induced oligomer formation when it binds to the ribosome.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Multimerización de Proteína/fisiología , Ribosomas/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Humanos , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Mapeo Peptídico/métodos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ribosomas/química
13.
J Biol Chem ; 285(36): 28353-62, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20601428

RESUMEN

In humans the mitochondrial inner membrane protein Oxa1L is involved in the biogenesis of membrane proteins and facilitates the insertion of both mitochondrial- and nuclear-encoded proteins from the mitochondrial matrix into the inner membrane. The C-terminal approximately 100-amino acid tail of Oxa1L (Oxa1L-CTT) binds to mitochondrial ribosomes and plays a role in the co-translational insertion of mitochondria-synthesized proteins into the inner membrane. Contrary to suggestions made for yeast Oxa1p, our results indicate that the C-terminal tail of human Oxa1L does not form a coiled-coil helical structure in solution. The Oxa1L-CTT exists primarily as a monomer in solution but forms dimers and tetramers at high salt concentrations. The binding of Oxa1L-CTT to mitochondrial ribosomes is an enthalpy-driven process with a K(d) of 0.3-0.8 microM and a stoichiometry of 2. Oxa1L-CTT cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins L13, L20, and L28 and to mammalian mitochondrial specific ribosomal proteins MRPL48, MRPL49, and MRPL51. Oxa1L-CTT does not cross-link to proteins decorating the conventional exit tunnel of the bacterial large ribosomal subunit (L22, L23, L24, and L29).


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades Ribosómicas Grandes/metabolismo
14.
J Biol Chem ; 285(36): 28379-86, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20610392

RESUMEN

Mammalian mitochondrial mRNAs are basically leaderless, having few or no untranslated nucleotides prior to the 5'-start codon. We demonstrate here that mammalian mitochondrial 55 S ribosomes preferentially form initiation complexes at a 5'-terminal AUG codon over an internal AUG. The preferential use of the 5'-start codon is also seen on mitochondrial 28 S small subunits, which suggests that mitochondrial translation initiation on leaderless mRNAs does not require the large ribosomal subunit. The selection of the 5'-AUG is dependent on the presence of fMet-tRNA and is enhanced by the presence of the mitochondrial initiation factor IF2(mt). In prokaryotes, IF3 is believed to antagonize initiation on leaderless mRNAs. However, IF3(mt) stimulates initiation complex formation on leaderless mRNAs when tested with 55 S ribosomes. The addition of even a few nucleotides 5' to the AUG codon significantly reduces the efficiency of initiation, highlighting the importance of the leaderless or nearly leaderless nature of mitochondrial mRNAs. In addition, very few initiation complexes could form on a hybrid mRNA construct consisting of tRNA(Met) attached at the 5'-end of a mitochondrial protein-coding sequence. This observation demonstrates that post-transcriptional processing must occur prior to translation in mammalian mitochondria.


Asunto(s)
Codón Iniciador/metabolismo , Mitocondrias/metabolismo , Ribosomas/metabolismo , Animales , Secuencia de Bases , Bovinos , Codón Iniciador/genética , Humanos , Mitocondrias/genética , Datos de Secuencia Molecular , Fosfatos/metabolismo , Biosíntesis de Proteínas , ARN/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , Ribonucleótidos/metabolismo
15.
Biochim Biophys Acta ; 1802(7-8): 692-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20435138

RESUMEN

Mammalian mitochondria synthesize a set of thirteen proteins that are essential for energy generation via oxidative phosphorylation. The genes for all of the factors required for synthesis of the mitochondrially encoded proteins are located in the nuclear genome. A number of disease-causing mutations have been identified in these genes. In this manuscript, we have elucidated the mechanisms of translational failure for two disease states characterized by lethal mutations in mitochondrial elongation factor Ts (EF-Ts(mt)) and elongation factor Tu (EF-Tu(mt)). EF-Tu(mt) delivers the aminoacyl-tRNA (aa-tRNA) to the ribosome during the elongation phase of protein synthesis. EF-Ts(mt) regenerates EF-Tu(mt):GTP from EF-Tu(mt):GDP. A mutation of EF-Ts(mt) (R325W) leads to a two-fold reduction in its ability to stimulate the activity of EF-Tu(mt) in poly(U)-directed polypeptide chain elongation. This loss of activity is caused by a significant reduction in the ability of EF-Ts(mt) R325W to bind EF-Tu(mt), leading to a defect in nucleotide exchange. A mutation of Arg336 to Gln in EF-Tu(mt) causes infantile encephalopathy caused by defects in mitochondrial translation. EF-Tu(mt) R336Q is as active as the wild-type protein in polymerization using Escherichia coli 70S ribosomes and E. coli [(14)C]Phe-tRNA but is inactive in polymerization with mitochondrial [(14)C]Phe-tRNA and mitochondrial 55S ribosomes. The R336Q mutation causes a two-fold decrease in ternary complex formation with E. coli aa-tRNA but completely inactivates EF-Tu(mt) for binding to mitochondrial aa-tRNA. Clearly the R336Q mutation in EF-Tu(mt) has a far more drastic effect on its interaction with mitochondrial aa-tRNAs than bacterial aa-tRNAs.


Asunto(s)
Genes Letales , Mitocondrias/metabolismo , Mutación , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/fisiología , Biosíntesis de Proteínas/genética , Sustitución de Aminoácidos/fisiología , Animales , Bovinos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Genes Letales/fisiología , Mitocondrias/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiología , Mutación/fisiología , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/fisiología , Factores de Elongación de Péptidos/análisis , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , ARN de Transferencia Aminoácido-Específico/metabolismo , Relación Estructura-Actividad
17.
Biochem Biophys Res Commun ; 391(1): 942-6, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19962967

RESUMEN

Polyamines are important in both prokaryotic and eukaryotic translational systems. Spermine is a quaternary aliphatic amine that is cationic under physiological conditions. In this paper, we demonstrate that spermine stimulates fMet-tRNA binding to mammalian mitochondrial 55S ribosomes. The stimulatory effect of spermine is independent of the identity of the mRNA. The degree of stimulation of spermine is the same at all concentrations of mitochondrial initiation factor 2 (IF2(mt)) and mitochondrial initiation factor 3 (IF3(mt)). This observation indicates that IF2(mt) and IF3(mt), while essential for initiation, are not the primary components of the translation initiation system affected by spermine. IF3(mt) dissociates 55S ribosomes detectably in the absence of spermine, but this effect is strongly inhibited in the presence of spermine. This observation indicates that the positive effect of spermine on initiation is not due to an increase in the availability of the small subunits for initiation. Spermine also promotes fMet-tRNA binding to small subunits of the mitochondrial ribosome in the presence of IF2(mt). The major effect of spermine in promoting initiation complex formation thus appears to be on the interaction of fMet-tRNA with the ribosome.


Asunto(s)
Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/biosíntesis , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Espermina/farmacología , Animales , Bovinos , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Mitocondrias/metabolismo , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
18.
Mitochondrion ; 9(6): 429-37, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19671450

RESUMEN

The infantile presentation of mitochondrial respiratory chain defects frequently simulates acute bacterial infection and sepsis. Consequently, broad spectrum antibiotic therapy is often initiated before definitive diagnosis is reached and without taking into consideration the potential harm of antibiotics affecting mitochondrial translation. Here, we demonstrate that some commonly used translation-targeted antibiotics adversely affect the growth of fibroblasts from patients with defective mitochondrial translation systems. In addition, we show that these antibiotics inhibit mitochondrial translation in vitro. Our results suggest that patients with mitochondrial translation defects may be more vulnerable to toxic-side-effects following the administration of certain translation-targeted antibiotics.


Asunto(s)
Antibacterianos/efectos adversos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Masculino
19.
Biochemistry ; 48(15): 3269-78, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19239245

RESUMEN

Mitochondrial translational initiation factor 3 (IF3(mt)) is a 29 kDa protein that has N- and C-terminal domains, homologous to prokaryotic IF3, connected by a linker region. The homology domains are preceded and followed by short extensions. No information is currently available on the specific residues in IF3(mt) important for its activity. On the basis of homology models of IF3(mt), mutations were designed in the N-terminal, C-terminal, and linker domains to identify the functionally important regions. Mutation of residues 170-171, and 175 in the C-terminal domain to alanine resulted in a nearly complete loss of activity in initiation complex formation and in the dissociation of mitochondrial 55S ribosomes. However, these mutated proteins bind to the small (28S) subunit of the mammalian mitochondrial ribosome with K(d) values similar to that of the wild-type factor. These mutations appear to lead to a factor defective in the ability to displace the large (39S) subunit of the ribosome from the 55S monosomes in an active process. Other mutations in the N-terminal domain, the linker region, and the C-terminal domain had little or no effect on the ability of IF3(mt) to promote initiation complex formation on mitochondrial 55S ribosomes. Mutation of residues 247 and 248 in the C-terminal extension abolished the ability of IF3(mt) to reduce the level of binding of fMet-tRNA to the ribosome in the absence of mRNA. Our results suggest that IF3(mt) plays an active role in initiation of translation.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Biosíntesis de Proteínas , Animales , Bovinos , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factores Eucarióticos de Iniciación/fisiología , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Humanos , Ratones , Proteínas Mitocondriales/fisiología , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/fisiología , Factor 3 Procariótico de Iniciación/química , Factor 3 Procariótico de Iniciación/genética , Estructura Terciaria de Proteína/genética , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
20.
Nucleic Acids Res ; 37(5): 1616-27, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19151083

RESUMEN

Mitochondrial (mt) tRNA(Met) has the unusual modified nucleotide 5-formylcytidine (f(5)C) in the first position of the anticodon. This tRNA must translate both AUG and AUA as methionine. By constructing an in vitro translation system from bovine liver mitochondria, we examined the decoding properties of the native mt tRNA(Met) carrying f(5)C in the anticodon compared to a transcript that lacks the modification. The native mt Met-tRNA could recognize both AUA and AUG codons as Met, but the corresponding synthetic tRNA(Met) lacking f(5)C (anticodon CAU), recognized only the AUG codon in both the codon-dependent ribosomal binding and in vitro translation assays. Furthermore, the Escherichia coli elongator tRNA(Met)(m) with the anticodon ac(4)CAU (ac(4)C = 4-acetylcytidine) and the bovine cytoplasmic initiator tRNA(Met) (anticodon CAU) translated only the AUG codon for Met on mt ribosome. The codon recognition patterns of these tRNAs were the same on E. coli ribosomes. These results demonstrate that the f(5)C modification in mt tRNA(Met) plays a crucial role in decoding the nonuniversal AUA codon as Met, and that the genetic code variation is compensated by a change in the tRNA anticodon, not by a change in the ribosome. Base pairing models of f(5)C-G and f(5)C-A based on the chemical properties of f(5)C are presented.


Asunto(s)
Codón/química , Citidina/análogos & derivados , Mitocondrias/genética , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/química , ARN/química , Animales , Anticodón/química , Emparejamiento Base , Secuencia de Bases , Bovinos , Codón Iniciador/química , Citidina/química , Escherichia coli/genética , Metionina/metabolismo , Datos de Secuencia Molecular , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA