Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(4): e0215238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31002682

RESUMEN

There is currently much interest in developing general approaches for mapping forest aboveground carbon density using structural information contained in airborne LiDAR data. The most widely utilized model in tropical forests assumes that aboveground carbon density is a compound power function of top of canopy height (a metric easily derived from LiDAR), basal area and wood density. Here we derive the model in terms of the geometry of individual tree crowns within forest stands, showing how scaling exponents in the aboveground carbon density model arise from the height-diameter (H-D) and projected crown area-diameter (C-D) allometries of individual trees. We show that a power function relationship emerges when the C-D scaling exponent is close to 2, or when tree diameters follow a Weibull distribution (or other specific distributions) and are invariant across the landscape. In addition, basal area must be closely correlated with canopy height for the approach to work. The efficacy of the model was explored for a managed uneven-aged temperate forest in Ontario, Canada within which stands dominated by sugar maple (Acer saccharum Marsh.) and mixed stands were identified. A much poorer goodness-of-fit was obtained than previously reported for tropical forests (R2 = 0.29 vs. about 0.83). Explanations for the poor predictive power on the model include: (1) basal area was only weakly correlated with top canopy height; (2) tree size distributions varied considerably across the landscape; (3) the allometry exponents are affected by variation in species composition arising from timber management and soil conditions; and (4) the C-D allometric power function was far from 2 (1.28). We conclude that landscape heterogeneity in forest structure and tree allometry reduces the accuracy of general power-function models for predicting aboveground carbon density in managed forests. More studies in different forest types are needed to understand the situations in which power functions of LiDAR height are appropriate for modelling forest carbon stocks.


Asunto(s)
Algoritmos , Carbono/análisis , Bosques , Modelos Teóricos , Árboles/metabolismo , Ciclo del Carbono , Conservación de los Recursos Naturales/métodos , Ontario , Árboles/clasificación , Árboles/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Madera/metabolismo
2.
Virus Evol ; 5(1): vey038, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30723550

RESUMEN

Understanding which HIV-1 variants are most likely to be transmitted is important for vaccine design and predicting virus evolution. Since most infections are founded by single variants, it has been suggested that selection at transmission has a key role in governing which variants are transmitted. We show that the composition of the viral population within the donor at the time of transmission is also important. To support this argument, we developed a probabilistic model describing HIV-1 transmission in an untreated population, and parameterised the model using both within-host next generation sequencing data and population-level epidemiological data on heterosexual transmission. The most basic HIV-1 transmission models cannot explain simultaneously the low probability of transmission and the non-negligible proportion of infections founded by multiple variants. In our model, transmission can only occur when environmental conditions are appropriate (e.g. abrasions are present in the genital tract of the potential recipient), allowing these observations to be reconciled. As well as reproducing features of transmission in real populations, our model demonstrates that, contrary to expectation, there is not a simple link between the number of viral variants and the number of viral particles founding each new infection. These quantities depend on the timing of transmission, and infections can be founded with small numbers of variants yet large numbers of particles. Including selection, or a bias towards early transmission (e.g. due to treatment), acts to enhance this conclusion. In addition, we find that infections initiated by multiple variants are most likely to have derived from donors with intermediate set-point viral loads, and not from individuals with high set-point viral loads as might be expected. We therefore emphasise the importance of considering viral diversity in donors, and the timings of transmissions, when trying to discern the complex factors governing single or multiple variant transmission.

3.
Biodivers Data J ; (2): e1041, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24855438

RESUMEN

Trait data are fundamental for many aspects of ecological research, particularly for modeling species response to environmental change. We synthesised information from the literature (mainly field guides) and direct measurements from museum specimens, providing a comprehensive dataset of 26 attributes, covering the 43 resident species of Odonata in Britain. Traits included in this database range from morphological traits (e.g. body length) to attributes based on the distribution of the species (e.g. climatic restriction). We measured 11 morphometric traits from five adult males and five adult females per species. Using digital callipers, these measurements were taken from dry museum specimens, all of which were wild caught individuals. Repeated measures were also taken to estimate measurement error. The trait data are stored in an online repository (https://github.com/BiologicalRecordsCentre/Odonata_traits), alongside R code designed to give an overview of the morphometric data, and to combine the morphometric data to the single value per trait per species data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA