Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 119(24): 7503-15, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25588100

RESUMEN

Efficient light harvesting for molecular-based solar-conversion systems requires absorbers that span the photon-rich red and near-infrared (NIR) regions of the solar spectrum. Reported herein are the photophysical properties of a set of six chlorin-imides and nine synthetic chlorin analogues that extend the absorption deeper (624-714 nm) into these key spectral regions. These absorbers help bridge the gap between typical chlorins and bacteriochlorins. The new compounds have high fluorescence quantum yields (0.15-0.34) and long singlet excited-state lifetimes (4.2-10.9 ns). The bathochromic shift in Qy absorption is driven by substituent-based stabilization of the lowest unoccupied molecular orbital, with the largest shifts for chlorins that bear an electron-withdrawing, conjugative group at the 3-position in combination with a 13,15-imide ring.


Asunto(s)
Imidas/química , Porfirinas/química , Electrones , Fluorescencia , Estructura Molecular , Procesos Fotoquímicos , Teoría Cuántica
2.
Photochem Photobiol Sci ; 13(4): 634-50, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24496463

RESUMEN

Synthetic chlorins can accommodate diverse substituents about the macrocycle perimeter. Simple auxochromes (e.g., vinyl, acetyl, phenyl) allow systematic tuning of spectral and photophysical features. More extensive spectral tailoring may be achieved by using more potent, highly conjugated substituents that themselves bring new absorption into a target spectral region, if deleterious excited-state quenching processes can be avoided. To explore such an expanded substituent space, herein the spectral and photophysical properties of four chlorin-chalcones are reported. The molecules are free base and zinc chlorins with substituents at the 13-position that include a chalcone and an extended chalcone derived by reaction of the 13-acetylchlorin with benzaldehyde and all-trans-retinal, respectively. Measurements of the spectral and photophysical properties (Φf, τs, kf, kic, kisc) are accompanied by density functional calculations that examine the characteristics of the frontier molecular orbitals. The chlorin-chalcones in nonpolar (toluene) and polar (dimethylsulfoxide) media exhibit bathochromically shifted (and intense) Qy absorption bands. The presence of the retinylidene group adds new absorption in the blue-green region where the chlorins are typically transparent; excitation in this region leads to quantitative formation of the chlorin Qy excited state. The spectral properties generally correlate with substituent effects on the frontier MOs. The four chlorin-chalcones in the solvent toluene have high fluorescence yields (0.24-0.30) and multi-nanosecond singlet excited-state lifetimes (3.7-8.4 ns), in addition to the added absorption imparted by the chalcone moiety. Collectively, the studies reported herein provide insight into the fundamental properties of chlorins and illustrate the utility of chalcones as a means of both tuning and augmenting the spectral properties of these chromophores.

3.
J Am Chem Soc ; 134(10): 4589-99, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22375881

RESUMEN

Biohybrid antenna systems have been constructed that contain synthetic chromophores attached to 31mer analogues of the bacterial photosynthetic core light-harvesting (LH1) ß-polypeptide. The peptides are engineered with a Cys site for bioconjugation with maleimide-terminated chromophores, which include synthetic bacteriochlorins (BC1, BC2) with strong near-infrared absorption and commercial dyes Oregon green (OGR) and rhodamine red (RR) with strong absorption in the blue-green to yellow-orange regions. The peptides place the Cys 14 (or 6) residues before a native His site that binds bacteriochlorophyll a (BChl-a) and, like the native LH proteins, have high helical content as probed by single-reflection IR spectroscopy. The His residue associates with BChl-a as in the native LH1 ß-polypeptide to form dimeric ßß-subunit complexes [31mer(-14Cys)X/BChl](2), where X is one of the synthetic chromophores. The native-like BChl-a dimer has Q(y) absorption at 820 nm and serves as the acceptor for energy from light absorbed by the appended synthetic chromophore. The energy-transfer characteristics of biohybrid complexes have been characterized by steady-state and time-resolved fluorescence and absorption measurements. The quantum yields of energy transfer from a synthetic chromophore located 14 residues from the BChl-coordinating His site are as follows: OGR (0.30) < RR (0.60) < BC2 (0.90). Oligomeric assemblies of the subunit complexes [31mer(-14Cys)X/BChl](n) are accompanied by a bathochromic shift of the Q(y) absorption of the BChl-a oligomer as far as the 850-nm position found in cyclic native photosynthetic LH2 complexes. Room-temperature stabilized oligomeric biohybrids have energy-transfer quantum yields comparable to those of the dimeric subunit complexes as follows: OGR (0.20) < RR (0.80) < BC1 (0.90). Thus, the new biohybrid antennas retain the energy-transfer and self-assembly characteristics of the native antenna complexes, offer enhanced coverage of the solar spectrum, and illustrate a versatile paradigm for the construction of artificial LH systems.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Luz , Fotosíntesis , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Espectroscopía Infrarroja por Transformada de Fourier
4.
Photochem Photobiol ; 88(3): 651-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22248176

RESUMEN

Assessing the effects of substituents on the spectra of chlorophylls is essential for gaining a deep understanding of photosynthetic processes. Chlorophyll a and b differ solely in the nature of the 7-substituent (methyl versus formyl), whereas chlorophyll a and d differ solely in the 3-substituent (vinyl versus formyl), yet have distinct long-wavelength absorption maxima: 665 (a) 646 (b) and 692 nm (d). Herein, the spectra, singlet excited-state decay characteristics, and results from DFT calculations are examined for synthetic chlorins and 13(1)-oxophorbines that contain ethynyl, acetyl, formyl and other groups at the 3-, 7- and/or 13-positions. Substituent effects on the absorption spectra are well accounted for using Gouterman's four-orbital model. Key findings are that (1) the dramatic difference in auxochromic effects of a given substituent at the 7- versus 3- or 13-positions primarily derives from relative effects on the LUMO+1 and LUMO; (2) formyl at the 7- or 8-position effectively "porphyrinizes" the chlorin and (3) the substituent effect increases in the order of vinyl < ethynyl < acetyl < formyl. Thus, the spectral properties are governed by an intricate interplay of electronic effects of substituents at particular sites on the four frontier MOs of the chlorin macrocycle.


Asunto(s)
Clorofila/química , Clorofila/análogos & derivados , Clorofila/síntesis química , Espectroscopía de Resonancia Magnética , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...