Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 22(9): e13911, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609868

RESUMEN

Aging of the central nervous system (CNS) leads to motoric and cognitive decline and increases the probability for neurodegenerative disease development. Astrocytes fulfill central homeostatic functions in the CNS including regulation of immune responses and metabolic support of neurons and oligodendrocytes. In this study, we investigated the effect of redox imbalance in astrocytes by using a conditional astrocyte-specific SOD2-deficient mouse model (SOD2ako ) and analyzed these animals at different stages of their life. SOD2ako mice did not exhibit any overt phenotype within the first postnatal weeks. However, already as young adults, they displayed progressive motoric impairments. Moreover, as these mice grew older, they exhibited signs of a progeroid phenotype and early death. Histological analysis in moribund SOD2ako mice revealed the presence of age-related brain alterations, neuroinflammation, neuronal damage and myelin impairment in brain and spinal cord. Additionally, transcriptome analysis of primary astrocytes revealed that SOD2 deletion triggered a hypometabolic state and promoted polarization toward A1-neurotoxic status, possibly underlying the neuronal and myelin deficits. Conclusively, our study identifies maintenance of ROS homeostasis in astrocytes as a critical prerequisite for physiological CNS aging.


Asunto(s)
Envejecimiento , Astrocitos , Enfermedades Neurodegenerativas , Animales , Ratones , Sistema Nervioso Central , Oxidación-Reducción
2.
Front Immunol ; 12: 640672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017328

RESUMEN

The differentiation of human induced pluripotent stem cells (hiPSCs) into T and natural killer (NK) lymphocytes opens novel possibilities for developmental studies of immune cells and in-vitro generation of cell therapy products. In particular, iPSC-derived NK cells gained interest in adoptive anti-cancer immunotherapies, since they enable generation of homogenous populations of NK cells with and without genetic engineering that can be grown at clinical scale. However, the phenotype of in-vitro generated NK cells is not well characterized. NK cells derive in the bone marrow and mature in secondary lymphoid tissues through distinct stages from CD56brightCD16- to CD56dimCD16+ NK cells that represents the most abandoned population in peripheral blood. In this study, we efficiently generated CD56+CD16+CD3- NK lymphocytes from hiPSC and characterized NK-cell development by surface expression of NK-lineage markers. Hematopoietic priming of hiPSC resulted in 31.9% to 57.4% CD34+CD45+ hematopoietic progenitor cells (HPC) that did not require enrichment for NK lymphocyte propagation. HPC were further differentiated into NK cells on OP9-DL1 feeder cells resulting in high purity of CD56brightCD16- and CD56brightCD16+ NK cells. The output of generated NK cells increased up to 40% when OP9-DL1 feeder cells were inactivated with mitomycine C. CD7 expression could be detected from the first week of differentiation indicating priming towards the lymphoid lineage. CD56brightCD16-/+ NK cells expressed high levels of DNAM-1, CD69, natural killer cell receptors NKG2A and NKG2D, and natural cytotoxicity receptors NKp46, NKp44, NKp30. Expression of NKp80 on 40% of NK cells, and a perforin+ and granzyme B+ phenotype confirmed differentiation up to stage 4b. Killer cell immunoglobulin-like receptor KIR2DL2/DL3 and KIR3DL1 were found on up to 3 and 10% of mature NK cells, respectively. NK cells were functional in terms of cytotoxicity, degranulation and antibody-dependent cell-mediated cytotoxicity.


Asunto(s)
Diferenciación Celular/inmunología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/metabolismo , Antígeno CD56/inmunología , Técnicas de Cultivo de Célula/métodos , Degranulación de la Célula/inmunología , Proteínas Ligadas a GPI/inmunología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Células Asesinas Naturales/citología , Activación de Linfocitos/inmunología , Subgrupos Linfocitarios/citología , Receptores de IgG/inmunología , Receptores KIR2DL2/inmunología , Receptores KIR2DL3/inmunología , Receptores KIR3DL1/inmunología
3.
Cells ; 8(3)2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875834

RESUMEN

Human papillomaviruses (HPV) replicate their DNA in the suprabasal layer of the infected mucosa or skin. In order to create a suitable environment for vegetative viral DNA replication HPV delay differentiation and sustain keratinocyte proliferation that can lead to hyperplasia. The mechanism underlying cell growth stimulation is not well characterized. Here, we show that the E6 oncoprotein of the ßHPV type 8 (HPV8), which infects the cutaneous skin and is associated with skin cancer in Epidermodysplasia verruciformis patients and immunosuppressed organ transplant recipients, binds to the protein tyrosine phosphatase H1 (PTPH1), which resulted in increased protein expression and phosphatase activity of PTPH1. Suppression of PTPH1 in immortalized keratinocytes reduced cell proliferation as well as the level of epidermal growth factor receptor (EGFR). Furthermore, we report that HPV8E6 expressing keratinocytes have increased level of active, GTP-bound Ras. This effect was independent of PTPH1. Therefore, HPV8E6-mediated targeting of PTPH1 might result in higher level of EGFR and enhanced keratinocyte proliferation. The HPV8E6-mediated stimulation of Ras may be an additional step to induce cell growth. Our results provide novel insights into the mechanism how ßHPVE6 proteins support proliferation of infected keratinocytes, thus creating an environment with increased risk of development of skin cancer particularly upon UV-induced DNA mutations.


Asunto(s)
Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Oncogenes , Proteína Tirosina Fosfatasa no Receptora Tipo 3/metabolismo , Proliferación Celular , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas ras/metabolismo
4.
Neurobiol Dis ; 97(Pt A): 36-45, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27818323

RESUMEN

BACKGROUND: Monogenetic forms of amyotrophic lateral sclerosis (ALS) offer an opportunity for unraveling the molecular mechanisms underlying this devastating neurodegenerative disorder. In order to identify a link between ALS-related metabolic changes and neurodegeneration, we investigated whether ALS-causing mutations interfere with the peripheral and brain-specific expression and signaling of the metabolic master regulator PGC (PPAR gamma coactivator)-1α (PGC-1α). METHODS: We analyzed the expression of PGC-1α isoforms and target genes in two mouse models of familial ALS and validated the stimulated PGC-1α signaling in primary adipocytes and neurons of these animal models and in iPS derived motoneurons of two ALS patients harboring two different frame-shift FUS/TLS mutations. RESULTS: Mutations in SOD1 and FUS/TLS decrease Ppargc1a levels in the CNS whereas in muscle and brown adipose tissue Ppargc1a mRNA levels were increased. Probing the underlying mechanism in neurons, we identified the monocarboxylate lactate as a previously unrecognized potent and selective inducer of the CNS-specific PGC-1α isoforms. Lactate also induced genes like brain-derived neurotrophic factor, transcription factor EB and superoxide dismutase 3 that are down-regulated in PGC-1α deficient neurons. The lactate-induced CNS-specific PGC-1α signaling system is completely silenced in motoneurons derived from induced pluripotent stem cells obtained from two ALS patients harboring two different frame-shift FUS/TLS mutations. CONCLUSION: ALS mutations increase the canonical PGC-1α system in the periphery while inhibiting the CNS-specific isoforms. We identify lactate as an inducer of the neuronal PGC-1α system directly linking brain metabolism and neuroprotection. Changes in the PGC-1α system might be involved in the ALS accompanied metabolic changes and in neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa-1/genética , Tejido Adiposo Pardo/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Mutación , Neuronas/metabolismo , Isoformas de Proteínas , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Ratas , Superóxido Dismutasa-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA