Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Pharmaceutics ; 15(11)2023 Oct 25.
Article En | MEDLINE | ID: mdl-38004510

The therapeutic effectiveness of paliperidone in the treatment of schizophrenia has been limited by its poor oral bioavailability; hence, an alternative route could be appropriate. This study investigates the feasibility of developing a buccal film impregnated with paliperidone-loaded nanostructured lipid carriers (NLCs) and assesses the potential to enhance its bioavailability. Box-Behnken-based design optimization of NLCs was performed by examining the particles' physical characteristics. The polymeric film was used to load optimized NLCs, which were then assessed for their pharmaceutical properties, permeability, and pharmacokinetics. The optimization outcomes indicated that selected formulation variables had a considerable (p < 0.05) impact on responses such as particle size, entrapment efficiency, and % drug release. Desired characteristics such as a negative charge, higher entrapment efficiency, and nanoparticles with ideal size distribution were shown by optimized NLC dispersions. The developed film demonstrated excellent physico-mechanical properties, appropriate texture, good drug excipient compatibility (chemically stable formulation), and amorphous drug nature. A sustained Weibull model drug release (p < 0.0005) and superior flux (~5-fold higher, p < 0.005) were seen in NLC-loaded film compared to plain-drug-loaded film. The pharmacokinetics profile in rabbits supports the goal of buccal therapy as evidenced by significantly higher AUC0-12 (p < 0.0001) and greater relative bioavailability (236%) than the control. These results support the conclusion that paliperidone-loaded NLC buccal film has the potential to be an alternate therapy for its effective administration in the treatment of schizophrenia.

2.
Front Pharmacol ; 14: 1285258, 2023.
Article En | MEDLINE | ID: mdl-37964873

Ovarian cancer is a malignant tumor that primarily forms in the ovaries. It often goes undetected until it has spread to the pelvis and abdomen, making it more challenging to treat and often fatal. Historically, natural products and their structural analogues have played a pivotal role in pharmacotherapy, especially for cancer. Numerous studies have demonstrated the therapeutic potential of Linum usitatissimum against ovarian cancer, but the specific molecular mechanisms remain elusive. This study combines data mining, network pharmacology, and molecular docking analysis to pioneer an innovative approach for ovarian cancer treatment by identifying potent phytochemicals. Findings of current study revealed that Apigenin, Vitamin E, Palmitic acid, Riboflavin, Isolariciresinol, 5-Dehydro-avenasterol, Cholesterol, Pantothenic acid, Nicotinic acid, Campesterol, Beta-Sitosterol, Stigmasterol, Daucosterol, and Vitexin suppress tumor growth by influencing AKT1, JUN, EGFR, and VEGFA. Kaplan-Meier survival analysis spotlighted AKT1, JUN, EGFR, and VEGFA as potential diagnostic and prognostic biomarkers for ovarian cancer. However, it is imperative to conduct in vivo and in vitro examinations to ascertain the pharmacokinetics and biosafety profiles, bolstering the candidacy of L. usitatissimum in ovarian cancer therapeutics.

3.
J Biomol Struct Dyn ; : 1-22, 2023 Oct 09.
Article En | MEDLINE | ID: mdl-37811763

The remarkably high prevalence of obesity in Saudi Arabia reflects a global epidemic demanding urgent attention due to its associated health risks. The integration of traditional medicine, a vital cultural aspect, involves the use of medicinal plants to address various diseases, including obesity. This research merges network pharmacology (NP) and bioinformatics to innovate obesity treatment by identifying effective phytochemicals from native plants in the Taif valley. Focusing on six indigenous plants-Senna alexandrina, Capsicum annuum, Zingiber officinale, Curcuma longa, Trigonella foenum-graecum, and Foeniculum vulgare-we conducted preliminary screenings for potential bioactive compounds. We systematically compiled compound data from public databases and reviewed literature, revealing active compounds like apigenin, kaempferol, moupinamide, cyclocurcumin, chrysoeriol, isorhamnetin, rheinanthrone, cyclocurcumin, and riboflavin.Constructing a compound-target genes-obesity network unveiled their significant impact on metabolic regulation and fat accumulation, interacting notably with key proteins AKT1 and PTGS2. Molecular docking and 100 ns Molecular Dynamic (MD) simulations demonstrated robust binding affinity and stability at the docking site. Employing adipocytes as a cellular model, we gauged their viability and response to obesity-related stressors post-treatment with these native plant compounds.In conclusion, Saudi Arabia's indigenous plants hold promise as natural solutions for obesity treatment. This research opens new avenues in the battle against this pervasive health crisis by incorporating the potential of native botanicals.Communicated by Ramaswamy H. Sarma.

4.
Gels ; 9(7)2023 Jul 14.
Article En | MEDLINE | ID: mdl-37504455

Leflunomide (LEF), a disease-modifying anti-rheumatic drug, has been widely explored for its anti-inflammatory potential in skin disorders such as psoriasis and melanoma. However, its poor stability and skin irritation pose challenges for topical delivery. To surmount these issues, LEF-loaded solid lipid nanoparticles (SLNs) integrated with hydrogels have been developed in the present investigation. SLNs developed by microemulsion techniques were found ellipsoidal with 273.1 nm particle size and -0.15 mV zeta potential. Entrapment and total drug content of LEF-SLNs were obtained as 65.25 ± 0.95% and 93.12 ± 1.72%, respectively. FTIR and XRD validated the successful fabrication of LEF-SLNs. The higher stability of LEF-SLNs (p < 0.001) compared to pure drug solution was observed in photostability studies. Additionally, in vitro anti-inflammatory activity of LEF-SLNs showed good potential in comparison to pure drugs. Further, prepared LEF-SLNs loaded hydrogel showed ideal rheology, texture, occlusion, and spreadability for topical drug delivery. In vitro release from LEF-SLN hydrogel was found to follow the Korsmeyer-Peppas model. To assess the skin safety of fabricated lipidic formulation, irritation potential was performed employing the HET-CAM technique. In conclusion, the findings of this investigation demonstrated that LEF-SLN hydrogel is capable of enhancing the photostability of the entrapped drug while reducing its skin irritation with improved topical delivery characteristics.

5.
Pharmaceutics ; 15(5)2023 May 06.
Article En | MEDLINE | ID: mdl-37242664

The efficacy of topical antifungal therapy in onychomycosis has been hindered by the failure of the antimycotic to permeate the nail plate. This research aims to design and develop a transungual system for the effective delivery of efinaconazole utilizing constant voltage iontophoresis. Seven prototype drug-loaded hydrogel formulations (E1-E7) were prepared to assess the influence of solvent (ethanol) and cosolvent (Labrasol®) on transungual delivery. Optimization was performed to evaluate the effect of three independent variables; voltage, solvent-to-cosolvent ratio, and penetration enhancer (PEG 400) concentration on critical quality attributes (CQAs), such as drug permeation and loading into the nail. The selected hydrogel product was characterized for pharmaceutical properties, efinaconazole release from the nail, and antifungal activity. Preliminary data indicates ethanol, Labrasol®, and voltage influence the transungual delivery of efinaconazole. Optimization design indicates a significant impact by applied voltage (p-0.0001) and enhancer concentration (p-0.0004) on the CQAs. Excellent correlation between selected independent variables and CQAs was confirmed by the high desirability value (0.9427). A significant (p < 0.0001) enhancement in the permeation (~78.59 µg/cm2) and drug loading (3.24 µg/mg) was noticed in the optimized transungual delivery with 10.5 V. FTIR spectral data indicates no interaction between the drug and excipients, while the DSC thermograms confirmed the amorphous state of the drug in the formulation. Iontophoresis produces a drug depot in the nail that releases above the minimum inhibitory concentration level for an extended period, potentially reducing the need for frequent topical treatment. Antifungal studies further substantiate the release data and have shown remarkable inhibition of Trichophyton mentagrophyte. Overall, the promising results obtained here demonstrate the prospective of this non-invasive method for the effective transungual delivery of efinaconazole, which could improve the treatment of onychomycosis.

6.
Curr Top Med Chem ; 23(7): 520-538, 2023.
Article En | MEDLINE | ID: mdl-37254567

Viral infections range from self-limiting to more serious and fatal infections; therefore, some viral infections are of great public health concern worldwide, e.g., Hepatitis B virus, Hepatitis C virus, and HIV. Recently, the world faced a new infection due to the coronavirus, COVID-19, which was announced as a pandemic in early 2020. This virus infected more than 500 million people, killing around 6 million people worldwide. On the other hand, the increase in drug-resistant strains is also creating serious health problems. Thus, developing new selective antiviral agents with a different mode of action to fight against mutated and novel viruses is a primary goal of many researchers. Taking into account the role of heterocyclic compounds in drug discovery as a key structural component of most of the bioactive molecules; herein, we report an extensive review of the antiviral activity of five-membered heterocyclic compounds reported from 2015 to date. In this review, the antiviral activities of the agents containing the specified ring systems thiadiazoles, triazoles, oxadiazoles, and thiazoles are discussed.


COVID-19 , Heterocyclic Compounds , Thiadiazoles , Virus Diseases , Humans , Antiviral Agents/chemistry , Virus Diseases/drug therapy , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Thiadiazoles/chemistry
7.
Front Pharmacol ; 14: 1187079, 2023.
Article En | MEDLINE | ID: mdl-37180727

Breast cancer is a silent killer disorder among women and a serious economic burden in healthcare management. Every 19 s, a woman is diagnosed with breast cancer, and every 74 s, a woman worldwide passes away from the disease. Despite the increase in progressive research, advanced treatment approaches, and preventive measures, breast cancer rates continue to increase. This study provides a combination of data mining, network pharmacology, and docking analysis that surely could revolutionize cancer treatment by exploiting prestigious phytochemicals. Crataegus monogyna is a small, rounded deciduous tree with glossy, deeply lobed leaves and flat sprays of cream flowers, followed by dark red berries in autumn. Various studies demonstrated that C. monogyna is therapeutically effective against breast cancer. However, the particular molecular mechanism is still unknown. This study is credited for locating bioactive substances, metabolic pathways, and target genes for breast cancer treatment. According to the current investigation, which examined compound-target genes-pathway networks, it was found that the bioactive compounds of C. monogyna may operate as a viable solution against breast cancer by altering the target genes implicated in the disease pathogenesis. The expression level of target genes was analyzed using GSE36295 microarray data. Docking analysis and molecular dynamic simulation studies further strengthened the current findings by validating the effective activity of the bioactive compounds against putative target genes. In summary, we propose that six key compounds, luteolin, apigenin, quercetin, kaempferol, ursolic acid, and oleanolic acid, contributed to the development of breast cancer by affecting the MMP9 and PPARG proteins. Integration of network pharmacology and bioinformatics revealed C. monogyna's multitarget pharmacological mechanisms against breast cancer. This study provides convincing evidence that C. monogyna might partially alleviate breast cancer and ultimately lays a foundation for further experimental research on the anti-breast cancer activity of C. monogyna.

8.
Molecules ; 27(23)2022 Nov 22.
Article En | MEDLINE | ID: mdl-36500230

A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.


Cyclooxygenase Inhibitors , Lipoxygenase Inhibitors , Lipoxygenase Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Structure-Activity Relationship , Molecular Structure , Cyclooxygenase 2 Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry
9.
Nanomaterials (Basel) ; 12(23)2022 Nov 26.
Article En | MEDLINE | ID: mdl-36500833

Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into ß-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (ß-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 µg/mL) in comparison to SES (106 µg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.

10.
Molecules ; 27(22)2022 Nov 16.
Article En | MEDLINE | ID: mdl-36432014

A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, -1, and -1.414). According to the Design Expert software's predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.


Neoplasms , Poloxamer , Humans , Poloxamer/chemistry , Paclitaxel/pharmacology , Folic Acid/chemistry , Drug Liberation
11.
Drug Deliv ; 29(1): 3370-3383, 2022 Dec.
Article En | MEDLINE | ID: mdl-36404771

Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.


Diabetes Mellitus , Malva , Nanofibers , Nanofibers/chemistry , Neomycin , Wound Healing , Plant Extracts/pharmacology , Plant Extracts/chemistry
12.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 10.
Article En | MEDLINE | ID: mdl-36015129

Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)'s unfolding process for controlled release. The IH-loaded unfolding film formulation was optimized using the Box-Behnken design for folding endurance and length of tested layer (LTL). Initially, the formulation was made using several anti-adhesive additives to promote the unfolding mechanism. Citric acid and sodium bicarbonate were selected as anti-adhesives based on these results. The enfolded film in a capsule shell was shown to unroll in the stomach fluids and render drug delivery up to 12 h in acidic conditions. A fabricated system should have dimensions more than the size of the relaxed pyloric sphincter, and as required, >20 mm LTL was identified. This further confirms that the residence period in the stomach is irrelevant to the fed or fasted condition. Based on desirability criteria, the formulation containing 143.83, 0.7982, and 14.6096 Eudragit L100, PEG, and sodium bicarbonate are selected as optimized formulations (O-IH-UF). The optimized formulation was further analyzed for various parameters such as tensile strength, mechanical strength, unfolding nature, degradability, and in vitro release studies. The pharmacokinetic study revealed greater AUC (area under the curve) and long half-life with the designed O-IH-UF formulation, confirming that the unfolding film type can be a favorable drug system for enhancing the bioavailability of low soluble drugs. The results showed that unfolding types of gastro retentive systems could potentiate the drugs with stability issues in an alkaline medium or those with absorption in acidic conditions.

13.
Antibiotics (Basel) ; 11(7)2022 Jun 21.
Article En | MEDLINE | ID: mdl-35884084

A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a-3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k-3m. Thus, compounds 3k-3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.

14.
Pharmaceutics ; 14(7)2022 Jun 30.
Article En | MEDLINE | ID: mdl-35890289

The present research was aimed to develop a terbinafin hydrochloride (TH)-encapsulated solid lipid nanoparticles (SLNs) hydrogel for improved antifungal efficacy. TH-loaded SLNs were obtained from glyceryl monostearate (lipid) and Pluronic® F68 (surfactant) employing high-pressure homogenization. The ratio of drug with respect to lipid was optimized, considering factors such as desired particle size and highest percent encapsulation efficiency. Lyophilized SLNs were then incorporated in the hydrogel prepared from 0.2-1.0% w/v carbopol 934P and further evaluated for rheological parameters. The z-average, zeta potential and polydispersity index were found to be 241.3 nm, -15.2 mV and 0.415, respectively. The SLNs show a higher entrapment efficiency of about 98.36%, with 2.12 to 6.3602% drug loading. SEM images, XRD and the results of the DSC, FTIR show successful preparation of SLNs after freeze drying. The TH-loaded SLNs hydrogel showed sustained drug release (95.47 ± 1.45%) over a period of 24 h. The results reported in this study show a significant effect on the zone of inhibition than the marketed formulation and pure drug in Candida albicans cultures, with better physical stability at cooler temperatures. It helped to enhance skin deposition inthe ex vivostudy and improved, in vitro and in vivo, the antifungal activity.

15.
Pharmaceutics ; 14(7)2022 Jul 06.
Article En | MEDLINE | ID: mdl-35890316

As regulatory and technical landscapes for pharmaceutical formulation development are rapidly evolving, a risk-management approach using multivariate analysis is highly essential for designing a product with requisite critical quality attributes (CQA). Efinaconazole, a newly approved poorly water-soluble antifungal triazole drug has poor permeability. Spanlastics, new-generation surfactant nanovesicles, being fluidic, help improve the permeability of drugs. Therefore, we optimized efinaconazole spanlastics using the concepts of Formulation-by-Design (FbD) and explored the feasibility of transungual delivery for the management of onychomycosis. Using the Ishikawa fishbone diagram, the risk factors that may have an impact on the CQA of efinaconazole spanlastic vesicles were identified. Application of the Plackett-Burman experimental design facilitated the screening of eight different formulation and process parameters influencing particle size, transmittance, relative deformability, zeta potential, entrapment efficiency, and dissolution efficiency. With the help of Pareto charts, the three most significant factors were identified, viz., vesicle builder (Span), edge activator (Tween), and mixing time. The levels of these three critical variables were optimized by FbD to reduce the particle size and maximize the transparency, relative deformability, encapsulation efficiency, and dissolution efficiency of efinaconazole spanlastic nanovesicles. Bayesian and Lenth's analysis and mathematical modeling of the experimental data helped to quantify the critical formulation attributes required for getting the formulation with optimum quality features. The optimized efinaconazole-loaded spanlastic vesicles had a particle size of 197 nm, transparency of 91%, relative deformability of 12.5 min, and dissolution efficiency of 81.23%. The spanlastic formulation was incorporated into a gel and explored ex vivo for transungual delivery. This explorative study provides an example of the application of principles of risk management, statistical multivariate analysis, and the FbD approach in developing efinaconazole spanlastic nanovesicles.

16.
Gels ; 8(6)2022 May 30.
Article En | MEDLINE | ID: mdl-35735686

The clinical efficacy of antiretroviral therapy in NeuroAIDS is primarily limited by the low perfusion of the drug to the brain. The objective of the current investigation was to design and develop an in situ mucoadhesive gel loaded with darunavir to assess the feasibility of brain targeting through the intranasal route. Preliminary batches (F1−F9) were prepared and evaluated for various pharmaceutical characteristics. A full factorial design of the experiment was applied to optimize and assess the effect of two influencing variables (Carbopol 934P (X1) and Poloxamer 407 (X2)) on the response effects (gelation temperature (Y1) and % drug release (Y2) at 8 h). The data demonstrate that both influencing variables affect the response variables significantly (p < 0.05). The optimized formulation (F7) exhibited favorable rheological properties, adequate mucoadhesion, sustained drug release, and greater permeation across the nasal mucosa. An in vitro ciliotoxicity study confirms the nontoxicity of the optimized in situ gel (D7) on the nasal mucosa. An in vivo pharmacokinetic study in rats was performed to assess drug targeting to the brain following the nasal application of the selected in situ gel (D7). Significantly higher (p < 0.0001) Cmax (~4-fold) and AUC0-α (~3.5-fold) values were noticed in the brain after nasal application, as compared to the intravenous route. However, less systemic exposure to darunavir was noticed with nasal therapy, which confirms the low absorption of the drug into the central compartment. Overall, the data here demonstrate that the optimized in situ mucoadhesive nasal gel is effective in targeting darunavir to the brain by the nasal route and could be a viable option for the treatment of NeuroAIDS.

17.
Molecules ; 27(12)2022 Jun 10.
Article En | MEDLINE | ID: mdl-35744881

Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. PEG-400-mediated synthesis resulted in a yield of more than 95% in less than an hour of reaction time. Synthesized compounds 2a-2j were investigated for their in vitro cytotoxic activity. Moreover, the same compounds were subjected to systematic in silico screening for the identification of target proteins such as human adenosine kinase, glycogen synthase kinase-3ß, and human mitogen-activated protein kinase 1. The compounds showed promising results in cytotoxicity assays; among the tested compounds, 2c showed the most potent cytotoxic activity in the liver cancer cell line Hep G-2, with an IC50 of 3.29 ± 0.15 µM, whereas the standard drug IC50 was 4.68 ± 0.17 µM. In the prostate cancer cell line DU-145, the compounds displayed IC50 ranges of 15.42 ± 0.16 to 41.34 ± 0.12 µM, while the standard drug had an IC50 of 21.96 ± 0.15 µM. In terms of structural insights, the halogenated phenyl substitution on the second position of benzothiazepine was found to significantly improve the biological activity. This characteristic feature is supported by the binding patterns on the selected target proteins in docking simulations. In this study, 1,5-benzothiazepines have been identified as potential anticancer agents which can be further exploited for the development of more potent derivatives.


Antineoplastic Agents , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Male , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiazepines
18.
Article En | MEDLINE | ID: mdl-35742510

The development of an environmentally friendly analytical technique for simultaneous measurement of medicines with large concentration differences is difficult yet critical for environmental protection. Hence, in this work, new manipulated UV-spectroscopic methods with high scaling factors were established for concurrent quantification of telmisartan (TEL) and benidipine (BEN) in fixed-dose combinations. Two different methods were developed and established by calculation of peak height at zero crossing point of second derivative and the ratio of first derivative spectra with a scaling factor of 200 and 100, respectively. The absorption difference between the peaks and troughs of the ratio spectra, as well as continuous subtraction from ratio spectra, were established as additional methods. In addition, new procedures were validated using ICH recommendations. The proposed methods' linearity curves were constructed in the range of 0.5-10 µg mL-1 and 1-30 µg mL-1 for BEN and TEL, respectively, under optimized conditions. Furthermore, both the detection (0.088-0.139 µg mL-1 for BEN and 0.256-0.288 µg mL-1 for TEL) and quantification limits (0.293-0.465 µg mL-1 for BEN and 0.801-0.962 µg mL-1 for TEL) were adequate for quantifying both analytes in the formulation ratios. The accuracy and precision were confirmed by the good recovery percent (98.37%-100.6%), with low percent relative error (0.67%-1.70%) and less than 2 percent relative standard deviation, respectively. The specificity of the methods was proven by accurate and precise outcomes from the standard addition method and analysis of laboratory mixed solutions with large differences in concentrations of both analytes. Finally, the BEN and TEL content of the formulations was determined simultaneously without prior separation using these first ever reported spectroscopic methods. Furthermore, developed UV derivative spectroscopic methods demonstrated high greenness and whiteness when compared to the reported HPLC methods. These findings show that the projected methods were effective, practical, and environmentally acceptable for quality control of BEN and TEL in multicomponent formulations.


Chromatography, High Pressure Liquid , Chromatography, High Pressure Liquid/methods , Dihydropyridines , Quality Control , Spectrophotometry/methods , Telmisartan
19.
Saudi J Biol Sci ; 29(4): 2520-2525, 2022 Apr.
Article En | MEDLINE | ID: mdl-35531198

Background and objectives: Garlic and its number of preparations are known to be effective for treatment of dyslipidemia, but the data about the specific active constituents of the garlic on the possible therapeutic value is scarce. Therefore, the aim of this research was to evaluate the role of garlic oil (GO) and its active element, diallyl disulphide (DADS) for obviating dyslipidemia in animal model. Methods: High fat diet (HFD) was given to animals to induce dyslipidemia. Animals of HFD groups were fed with atherogenic diet for 15 days prior to treatment. Animals in their respective groups received vehicle, GO (50 and 100 mg/kg), and DADS (4.47 and 8.94 mg/kg) for five consecutive days. Lipid profiles were estimated in serum, oxidant/antioxidant and liver profile were measured in liver tissue homogenate (LTH). Results: Animals fed on HFD developed significant increase in the serum levels of triglycerides (TG), total cholesterol (TC), lactate dehydrogenase (LDL), malondialdehyde (MDA), glutathione peroxidase (GSHPx), glutathione (GSH), and glutathione disulfide (GSSG) that reduced significantly in groups that received GO and DADS treatments. Additionally, significant elevation in serum high density lipoprotein (HDL) level was observed in animals that received GO and DADS. Moreover, hepatic markers such as alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine transferase (ALT), that were abnormally altered by high fat diet, were significantly restored to almost normal values with GO and DADS treatments. Also, antioxidants such as superoxide dismutase (SOD), catalase (CAT), ferric reducing antioxidant power (FRAP), and total thiol (SH) levels in LTH were increased significantly in GO and DADS treated groups. When compared to DADS, GO showed better therapeutic effectiveness in terms of antihyperlipidemic and antioxidant properties. Conclusion: In hyperlipidemic rats, garlic and its principal active component, diallyl disulphide, were effective in avoiding dyslipidemia and neutralizing reactive free radicals induced by a high fat diet. It's an intriguing observation that GO has a larger therapeutic influence than its active constituent, DADS. These findings suggest that other constituents, in addition to GO's DADS, are involved in the compound's synergistic antihyperlipidemic and antioxidant activities.

20.
Molecules ; 27(9)2022 Apr 21.
Article En | MEDLINE | ID: mdl-35566029

Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.


Anopheles , Insecticides , Malaria , Animals , Carrier Proteins , Insecticides/chemistry , Insecticides/pharmacology , Juvenile Hormones/pharmacology , Larva , Molecular Docking Simulation , Mosquito Control , Mosquito Vectors , Pyrimidinones/pharmacology
...