Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(11): 4693-4706, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37726451

RESUMEN

Early life adversity (ELA) causes aberrant functioning of neural circuits affecting the health of an individual. While ELA-induced behavioural disorders resulting from sensory and cognitive disabilities can be assessed clinically, the neural mechanisms need to be probed using animal models by employing multi-pronged experimental approaches. As ELA can alter sensory perception, we investigated the effect of early weaning on murine olfaction. By implementing go/no-go odour discrimination paradigm, we observed olfactory learning and memory impairments in early life stressed (ELS) male mice. As olfactory bulb (OB) circuitry plays a critical role in odour learning, we studied the plausible changes in the OB of ELS mice. Lowered c-Fos activity in the external plexiform layer and a reduction in the number of dendritic processes of somatostatin-releasing, GABAergic interneurons (SOM-INs) in the ELS mice led us to hypothesise the underlying circuit. We recorded reduced synaptic inhibitory feedback on mitral/tufted (M/T) cells, in the OB slices from ELS mice, explaining the learning deficiency caused by compromised refinement of OB output. The reduction in synaptic inhibition was nullified by the photo-activation of ChR2-expressing SOM-INs in ELS mice. The role of SOM-INs was revealed by learning-dependent refinement of Ca2+dynamics quantified by GCaMP6f signals, which was absent in ELS mice. Further, the causal role of SOM-INs involving circuitry was investigated by optogenetic modulation during the odour discrimination learning. Photo-activating these neurons rescued the ELA-induced learning deficits. Conversely, photo-inhibition caused learning deficiency in control animals, while it completely abolished the learning in ELS mice, confirming the adverse effects mediated by SOM-INs. Our results thus establish the role of specific inhibitory circuit in pre-cortical sensory area in orchestrating ELA-dependent changes.


Asunto(s)
Experiencias Adversas de la Infancia , Bulbo Olfatorio , Ratones , Masculino , Animales , Bulbo Olfatorio/metabolismo , Interneuronas/metabolismo , Neuronas/metabolismo , Somatostatina/metabolismo
2.
Front Neurosci ; 17: 1180868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404465

RESUMEN

Neuronal morphological characterization and behavioral phenotyping in mouse models help dissecting neural mechanisms of brain disorders. Olfactory dysfunctions and other cognitive problems were widely reported in asymptomatic carriers and symptomatic patients infected with Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This led us to generate the knockout mouse model for Angiotensin Converting Enzyme-2 (ACE2) receptor, one of the molecular factors mediating SARS-CoV-2 entry to the central nervous system, using CRISPR-Cas9 based genome editing tools. ACE2 receptors and Transmembrane Serine Protease-2 (TMPRSS2) are widely expressed in the supporting (sustentacular) cells of human and rodent olfactory epithelium, however, not in the olfactory sensory neurons (OSNs). Hence, acute inflammation induced changes due to viral infection in the olfactory epithelium may explain transient changes in olfactory detectabilities. As ACE2 receptors are expressed in different olfactory centers and higher brain areas, we studied the morphological changes in the olfactory epithelium (OE) and olfactory bulb (OB) of ACE2 KO mice in comparison with wild type animals. Our results showed reduced thickness of OSN layer in the OE, and a decrease in cross-sectional area of glomeruli in the OB. Aberrations in the olfactory circuits were revealed by lowered immunoreactivity toward microtubule associated protein 2 (MAP2) in the glomerular layer of ACE2 KO mice. Further, to understand if these morphological alterations lead to compromised sensory and cognitive abilities, we performed an array of behavioral assays probing their olfactory subsystems' performances. ACE2 KO mice exhibited slower learning of odor discriminations at the threshold levels and novel odor identification impairments. Further, ACE2 KO mice failed to memorize the pheromonal locations while trained on a multimodal task implying the aberrations of neural circuits involved in higher cognitive functions. Our results thus provide the morphological basis for the sensory and cognitive disabilities caused by the deletion of ACE2 receptors and offer a potential experimental approach to study the neural circuit mechanisms of cognitive impairments observed in long COVID.

3.
Chemistry ; 29(7): e202202622, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36325647

RESUMEN

Demystifying the sulfation code of glycosaminoglycans (GAGs) to induce precise homing of nanoparticles in tumor cells or neurons influences the development of a potential drug- or gene-delivery system. However, GAGs, particularly heparan sulfate (HS) and chondroitin sulfate (CS), are structurally highly heterogeneous, and synthesizing well-defined HS/CS composed nanoparticles is challenging. Here, we decipher how specific sulfation patterns on HS and CS regulate receptor-mediated homing of nanoprobes in primary and secondary cells. We discovered that aggressive cancer cells such as MDA-MB-231 displayed a strong uptake of GAG-nanoprobes compared to mild or moderately aggressive cancer cells. However, there was no selectivity towards the GAG sequences, thus indicating the presence of more than one form of receptor-mediated uptake. However, U87 cells, olfactory bulb, and hippocampal primary neurons showed selective or preferential uptake of CS-E-coated nanoprobes compared to other GAG-nanoprobes. Furthermore, mechanistic studies revealed that the 4,6-O-disulfated-CS nanoprobe used the CD44 and caveolin-dependent endocytosis pathway for uptake. These results could lead to new opportunities to use GAG nanoprobes in nanomedicine.


Asunto(s)
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA